材料科学
钙钛矿(结构)
能量转换效率
光电子学
氧化铟锡
钙钛矿太阳能电池
电极
串联
太阳能电池
阴极
晶体硅
图层(电子)
纳米技术
化学工程
复合材料
电气工程
化学
物理化学
工程类
作者
Dazheng Chen,Shangzheng Pang,Weidong Zhu,Hongxiao Zhang,Long Zhou,Fengqin He,Jingjing Chang,Zhenhua Lin,He Xi,Jincheng Zhang,Chunfu Zhang,Yue Hao
摘要
Four-terminal tandem solar cells employing a perovskite top cell and crystalline silicon (Si) bottom cell offer a simpler pathway to surpass the efficiency limit of market-leading single-junction silicon solar cells. To obtain cost-effective top cells, it is crucial to develop transparent conductive electrodes with low parasitic absorption and manufacturing cost. The commonly used indium tin oxide (ITO) shows some drawbacks, like the increasing prices and high-energy magnetron sputtering process. Transparent metal electrodes are promising candidates owing to the simple evaporation process, facile process conditions, and high conductivity, and the cheaper silver (Ag) electrode with lower parasitic absorption than gold may be the better choice. In this work, efficient semitransparent perovskite solar cells (PSCs) were firstly developed by adopting the composite cathode of an ultrathin Ag electrode at its percolation threshold thickness (11 nm), a molybdenum oxide optical coupling layer, and a bathocuproine interfacial layer. The resulting power conversion efficiency (PCE) is 13.38% when the PSC is illuminated from the ITO side and the PCE is 8.34% from the Ag side, and no obvious current hysteresis can be observed. Furthermore, by stacking an industrial Si bottom cell (PCE = 14.2%) to build a four-terminal architecture, the overall PCEs of 17.03% (ITO side) and 11.60% (Ag side) can be obtained, which are 27% and 39% higher, respectively, than those of the perovskite top cell. Also, the PCE of the tandem cell has exceeded that of the reference Si solar cell by about 20%. This work provides an outlook to fabricate high-performance solar cells via the cost-effective pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI