Enhanced removal of zinc and cadmium from water using carboxymethyl cellulose-bridged chlorapatite nanoparticles

吸附 化学 羧甲基纤维素 吸附 纳米颗粒 朗缪尔吸附模型 核化学 离子交换 无机化学 化学工程 有机化学 离子 工程类
作者
Zhiliang Li,Yanyan Gong,Dongye Zhao,Zhi Dang,Zhang Lin
出处
期刊:Chemosphere [Elsevier]
卷期号:263: 128038-128038 被引量:25
标识
DOI:10.1016/j.chemosphere.2020.128038
摘要

Zinc (Zn2+) and cadmium (Cd2+) in water pose serious threats to human health and the environment. In search for a more effective treatment technology, we prepared a type of carboxymethyl cellulose (CMC) bridged chlorapatite (CMC-CAP) nanoparticles and tested the material for removal of Zn2+ and Cd2+ from water. CMC macromolecules were attached to CAP by bidentate bridging and hydrogen bonding, preserving the high adsorption capacity of CAP nanoparticles while allowing for easy gravity-separation of the nanoparticles. CMC-CAP showed rapid adsorption kinetics and 22.8% and 11.2% higher equilibrium uptake for Zn2+ and Cd2+, respectively, than pristine CAP. An extended dual-mode isotherm model, which takes into account both sorption and chemical precipitation, provided the best fits to the sorption isotherms, giving a maximum Langmuir sorption capacity of 141.1 mg g−1 for Zn2+ and 150.2 mg g−1 for Cd2+ by CMC-CAP. Na+ at up to 5 mM showed modest effects on the uptake of the heavy metals, while 2–5 mM of Ca2+ exerted notable inhibitive effects. Dissolved organic matter (up to 5 mg L−1 as TOC) inhibited the Zn2+ uptake by 16.5% but enhanced the Cd2+ removal by 8.6%. Material characterizations and surface binding analyses revealed that ion exchange, surface precipitation, and surface complexation were the removal mechanisms for the heavy metals. This study demonstrates stabilizer bridging may serve as a convenient strategy to facilitate water treatment uses of nanoparticles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ziyiziyi发布了新的文献求助10
刚刚
哈哈哈haha发布了新的文献求助40
刚刚
刚刚
啵乐乐完成签到,获得积分10
1秒前
哈哈完成签到,获得积分20
1秒前
2秒前
logic完成签到,获得积分10
2秒前
岁月轮回发布了新的文献求助10
2秒前
小离发布了新的文献求助10
2秒前
CodeCraft应助艺玲采纳,获得10
2秒前
chenjyuu完成签到,获得积分10
3秒前
韭黄发布了新的文献求助10
3秒前
3秒前
子车雁开完成签到,获得积分10
3秒前
4秒前
4秒前
故意的傲玉应助经法采纳,获得10
5秒前
上官若男应助经法采纳,获得10
5秒前
buno应助经法采纳,获得10
5秒前
1111应助经法采纳,获得10
5秒前
Lucas应助经法采纳,获得10
5秒前
Jasper应助经法采纳,获得10
5秒前
5秒前
习习应助经法采纳,获得10
5秒前
小鱼骑单车应助经法采纳,获得10
5秒前
辰柒发布了新的文献求助10
6秒前
英俊的铭应助经法采纳,获得10
6秒前
wgl发布了新的文献求助10
6秒前
领导范儿应助氨基酸采纳,获得30
6秒前
6秒前
科研通AI2S应助zink采纳,获得10
7秒前
科目三应助Jimmy采纳,获得10
7秒前
7秒前
7秒前
芋圆Z.发布了新的文献求助10
8秒前
8秒前
东皇太憨完成签到,获得积分10
8秒前
8秒前
9秒前
润润轩轩发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759