Dual attention dense convolutional network for intelligent fault diagnosis of spindle-rolling bearings

计算机科学 串联(数学) 卷积神经网络 人工智能 断层(地质) 块(置换群论) 特征(语言学) 对偶(语法数字) 模式识别(心理学) 深度学习 频道(广播) 代表(政治) 电信 数学 文学类 几何学 地质学 哲学 艺术 组合数学 政治 地震学 法学 语言学 政治学
作者
Jiang Su,Jianping Xuan,Jian Duan,Jian‐Bin Lin,Hongfei Tao,Qi Xia,Ruizhen Jing,Shoucong Xiong,Tielin Shi
出处
期刊:Journal of Vibration and Control [SAGE]
卷期号:27 (21-22): 2403-2419 被引量:17
标识
DOI:10.1177/1077546320961918
摘要

Over the past few years, deep learning–based techniques have been extensively and successfully adopted in the field of fault diagnosis. As the diagnosis tasks become more complicated, the structure of the traditional convolutional neural network (CNN) has to become deeper to deal with them, while the gradient of fault features may vanish within the deep network. In addition, all the features are treated equally in the traditional CNN, which cannot make the most of the representation power of CNN. Here, we proposed a method named dual attention dense convolutional network to handle these issues, which is constructed by the dense network and the dual attention block. On one hand, the dense connections and concatenation layers can reinforce the propagation of fault features among layers and mitigate the vanishing gradient phenomenon in the deep network. On the other hand, as the features flow through the channel attention and spatial attention within the dual attention block, this attention mechanism can learn which feature to emphasize or suppress and then obtain the cross-channel and cross-spatial weights of the features. These weights can make the most of the abundant information, elevating the expressive power of network. After passing through these dense and attention blocks, the generated high-level features are then fed into the final classification layer to obtain diagnosis results. The effectiveness of the dual attention dense convolutional network is validated by eight datasets of spindle bearings under various machinery conditions. Compared with eight other approaches including support vector machines, random forest, and six existing deep learning models, the results indicate that the proposed dual attention dense convolutional network possesses higher accuracy, fewer parameters and computations, and faster convergence under complex operational conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
希望天下0贩的0应助dyy采纳,获得10
1秒前
uncle发布了新的文献求助10
1秒前
e40076km完成签到,获得积分10
2秒前
xyzhang完成签到,获得积分10
2秒前
科研牛马完成签到 ,获得积分10
7秒前
如意发布了新的文献求助10
8秒前
cij123完成签到,获得积分10
8秒前
想不出昵称完成签到,获得积分10
8秒前
大魔完成签到,获得积分10
9秒前
萧狗子完成签到,获得积分10
9秒前
高高从霜完成签到 ,获得积分10
10秒前
平常的雁凡完成签到,获得积分20
11秒前
闫玉坤完成签到,获得积分10
12秒前
Sunbrust完成签到 ,获得积分10
14秒前
糖炒李子完成签到 ,获得积分10
15秒前
登登完成签到,获得积分10
15秒前
HONGZHOU完成签到,获得积分10
15秒前
16秒前
花花完成签到,获得积分10
16秒前
杜钿湄完成签到 ,获得积分10
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
科目三应助秦尔晗采纳,获得10
18秒前
渡劫完成签到,获得积分10
18秒前
稷下听风完成签到,获得积分10
18秒前
19秒前
20秒前
lujiajia发布了新的文献求助10
20秒前
不知道叫个啥完成签到 ,获得积分10
21秒前
雷媛完成签到,获得积分10
22秒前
23秒前
carol0705完成签到,获得积分10
23秒前
秦尔晗完成签到,获得积分10
24秒前
海岸线完成签到,获得积分10
24秒前
YoungLee完成签到,获得积分10
24秒前
乘11完成签到,获得积分10
24秒前
dujinjun完成签到,获得积分10
25秒前
lee完成签到 ,获得积分10
26秒前
文献狗完成签到,获得积分10
26秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450528
求助须知:如何正确求助?哪些是违规求助? 4558310
关于积分的说明 14266082
捐赠科研通 4481814
什么是DOI,文献DOI怎么找? 2454989
邀请新用户注册赠送积分活动 1445753
关于科研通互助平台的介绍 1421919