Dual attention dense convolutional network for intelligent fault diagnosis of spindle-rolling bearings

计算机科学 串联(数学) 卷积神经网络 人工智能 断层(地质) 块(置换群论) 特征(语言学) 对偶(语法数字) 模式识别(心理学) 深度学习 频道(广播) 代表(政治) 电信 数学 文学类 几何学 地质学 哲学 艺术 组合数学 政治 地震学 法学 语言学 政治学
作者
Jiang Su,Jianping Xuan,Jian Duan,Jian‐Bin Lin,Hongfei Tao,Qi Xia,Ruizhen Jing,Shoucong Xiong,Tielin Shi
出处
期刊:Journal of Vibration and Control [SAGE]
卷期号:27 (21-22): 2403-2419 被引量:17
标识
DOI:10.1177/1077546320961918
摘要

Over the past few years, deep learning–based techniques have been extensively and successfully adopted in the field of fault diagnosis. As the diagnosis tasks become more complicated, the structure of the traditional convolutional neural network (CNN) has to become deeper to deal with them, while the gradient of fault features may vanish within the deep network. In addition, all the features are treated equally in the traditional CNN, which cannot make the most of the representation power of CNN. Here, we proposed a method named dual attention dense convolutional network to handle these issues, which is constructed by the dense network and the dual attention block. On one hand, the dense connections and concatenation layers can reinforce the propagation of fault features among layers and mitigate the vanishing gradient phenomenon in the deep network. On the other hand, as the features flow through the channel attention and spatial attention within the dual attention block, this attention mechanism can learn which feature to emphasize or suppress and then obtain the cross-channel and cross-spatial weights of the features. These weights can make the most of the abundant information, elevating the expressive power of network. After passing through these dense and attention blocks, the generated high-level features are then fed into the final classification layer to obtain diagnosis results. The effectiveness of the dual attention dense convolutional network is validated by eight datasets of spindle bearings under various machinery conditions. Compared with eight other approaches including support vector machines, random forest, and six existing deep learning models, the results indicate that the proposed dual attention dense convolutional network possesses higher accuracy, fewer parameters and computations, and faster convergence under complex operational conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助闭眼听风雨采纳,获得10
刚刚
yyanxuemin919发布了新的文献求助10
1秒前
青葱鱼块完成签到 ,获得积分10
4秒前
浅沐发布了新的文献求助10
4秒前
3dyf发布了新的文献求助10
6秒前
7秒前
Keyto7应助Wenfeifei采纳,获得10
9秒前
丹D完成签到,获得积分10
10秒前
蒲云海发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
lessismore发布了新的文献求助10
18秒前
善学以致用应助kk采纳,获得10
18秒前
19秒前
20秒前
Ava应助合适的晓夏采纳,获得10
20秒前
21秒前
豆豆发布了新的文献求助10
21秒前
23秒前
dajiejie完成签到 ,获得积分10
24秒前
Keyto7应助Wenfeifei采纳,获得10
24秒前
25秒前
浮游应助楼梯口无头女孩采纳,获得10
25秒前
无辜之卉发布了新的文献求助10
26秒前
FJ发布了新的文献求助10
26秒前
大龙哥886应助科研通管家采纳,获得10
27秒前
BowieHuang应助科研通管家采纳,获得10
27秒前
小二郎应助科研通管家采纳,获得10
27秒前
27秒前
乐乐应助科研通管家采纳,获得10
27秒前
27秒前
CodeCraft应助豆豆采纳,获得10
28秒前
忐忑的果汁完成签到,获得积分10
29秒前
aging00完成签到,获得积分10
36秒前
lvyuan完成签到,获得积分10
41秒前
gigi完成签到 ,获得积分10
41秒前
Ava应助aging00采纳,获得10
42秒前
43秒前
skip完成签到,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563611
求助须知:如何正确求助?哪些是违规求助? 4648542
关于积分的说明 14685176
捐赠科研通 4590481
什么是DOI,文献DOI怎么找? 2518577
邀请新用户注册赠送积分活动 1491168
关于科研通互助平台的介绍 1462471