Dual attention dense convolutional network for intelligent fault diagnosis of spindle-rolling bearings

计算机科学 串联(数学) 卷积神经网络 人工智能 断层(地质) 块(置换群论) 特征(语言学) 对偶(语法数字) 模式识别(心理学) 深度学习 频道(广播) 代表(政治) 电信 数学 文学类 几何学 地质学 哲学 艺术 组合数学 政治 地震学 法学 语言学 政治学
作者
Jiang Su,Jianping Xuan,Jian Duan,Jian‐Bin Lin,Hongfei Tao,Qi Xia,Ruizhen Jing,Shoucong Xiong,Tielin Shi
出处
期刊:Journal of Vibration and Control [SAGE]
卷期号:27 (21-22): 2403-2419 被引量:17
标识
DOI:10.1177/1077546320961918
摘要

Over the past few years, deep learning–based techniques have been extensively and successfully adopted in the field of fault diagnosis. As the diagnosis tasks become more complicated, the structure of the traditional convolutional neural network (CNN) has to become deeper to deal with them, while the gradient of fault features may vanish within the deep network. In addition, all the features are treated equally in the traditional CNN, which cannot make the most of the representation power of CNN. Here, we proposed a method named dual attention dense convolutional network to handle these issues, which is constructed by the dense network and the dual attention block. On one hand, the dense connections and concatenation layers can reinforce the propagation of fault features among layers and mitigate the vanishing gradient phenomenon in the deep network. On the other hand, as the features flow through the channel attention and spatial attention within the dual attention block, this attention mechanism can learn which feature to emphasize or suppress and then obtain the cross-channel and cross-spatial weights of the features. These weights can make the most of the abundant information, elevating the expressive power of network. After passing through these dense and attention blocks, the generated high-level features are then fed into the final classification layer to obtain diagnosis results. The effectiveness of the dual attention dense convolutional network is validated by eight datasets of spindle bearings under various machinery conditions. Compared with eight other approaches including support vector machines, random forest, and six existing deep learning models, the results indicate that the proposed dual attention dense convolutional network possesses higher accuracy, fewer parameters and computations, and faster convergence under complex operational conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
虚幻白玉发布了新的文献求助10
1秒前
清客完成签到 ,获得积分10
1秒前
传奇3应助阳阳采纳,获得10
1秒前
3秒前
皮皮桂发布了新的文献求助10
3秒前
Hello应助无奈傲菡采纳,获得10
3秒前
故意的傲玉应助FENGHUI采纳,获得10
4秒前
5秒前
科研通AI5应助nextconnie采纳,获得10
6秒前
James完成签到,获得积分10
6秒前
7秒前
Lucas应助sun采纳,获得10
8秒前
KristenStewart完成签到,获得积分10
10秒前
过时的热狗完成签到,获得积分10
10秒前
点点完成签到,获得积分10
10秒前
Zxc发布了新的文献求助10
11秒前
涨芝士完成签到 ,获得积分10
12秒前
13秒前
无名欧文关注了科研通微信公众号
13秒前
科研123完成签到,获得积分10
15秒前
crescent完成签到 ,获得积分10
17秒前
无奈傲菡发布了新的文献求助10
17秒前
烟花应助123号采纳,获得10
20秒前
超帅的遥完成签到,获得积分10
20秒前
Zxc完成签到,获得积分10
21秒前
lbt完成签到 ,获得积分10
22秒前
yao完成签到 ,获得积分10
23秒前
23秒前
25秒前
26秒前
26秒前
doudou完成签到 ,获得积分10
26秒前
BCS完成签到,获得积分10
26秒前
领导范儿应助KYN采纳,获得10
26秒前
27秒前
独特的莫言完成签到,获得积分10
29秒前
lin发布了新的文献求助10
30秒前
aero完成签到 ,获得积分10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849