亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dual attention dense convolutional network for intelligent fault diagnosis of spindle-rolling bearings

计算机科学 串联(数学) 卷积神经网络 人工智能 断层(地质) 块(置换群论) 特征(语言学) 对偶(语法数字) 模式识别(心理学) 深度学习 频道(广播) 代表(政治) 电信 数学 文学类 几何学 地质学 哲学 艺术 组合数学 政治 地震学 法学 语言学 政治学
作者
Jiang Su,Jianping Xuan,Jian Duan,Jian‐Bin Lin,Hongfei Tao,Qi Xia,Ruizhen Jing,Shoucong Xiong,Tielin Shi
出处
期刊:Journal of Vibration and Control [SAGE]
卷期号:27 (21-22): 2403-2419 被引量:17
标识
DOI:10.1177/1077546320961918
摘要

Over the past few years, deep learning–based techniques have been extensively and successfully adopted in the field of fault diagnosis. As the diagnosis tasks become more complicated, the structure of the traditional convolutional neural network (CNN) has to become deeper to deal with them, while the gradient of fault features may vanish within the deep network. In addition, all the features are treated equally in the traditional CNN, which cannot make the most of the representation power of CNN. Here, we proposed a method named dual attention dense convolutional network to handle these issues, which is constructed by the dense network and the dual attention block. On one hand, the dense connections and concatenation layers can reinforce the propagation of fault features among layers and mitigate the vanishing gradient phenomenon in the deep network. On the other hand, as the features flow through the channel attention and spatial attention within the dual attention block, this attention mechanism can learn which feature to emphasize or suppress and then obtain the cross-channel and cross-spatial weights of the features. These weights can make the most of the abundant information, elevating the expressive power of network. After passing through these dense and attention blocks, the generated high-level features are then fed into the final classification layer to obtain diagnosis results. The effectiveness of the dual attention dense convolutional network is validated by eight datasets of spindle bearings under various machinery conditions. Compared with eight other approaches including support vector machines, random forest, and six existing deep learning models, the results indicate that the proposed dual attention dense convolutional network possesses higher accuracy, fewer parameters and computations, and faster convergence under complex operational conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老北京完成签到,获得积分10
1秒前
3秒前
koi完成签到,获得积分20
4秒前
6秒前
阿朱完成签到 ,获得积分10
7秒前
哦噢藕发布了新的文献求助10
11秒前
18秒前
tong童完成签到 ,获得积分10
18秒前
阿莫西林胶囊完成签到,获得积分10
26秒前
LYL完成签到,获得积分10
28秒前
33秒前
Elsa完成签到,获得积分10
33秒前
CipherSage应助浅呀呀呀采纳,获得10
37秒前
Criminology34完成签到,获得积分0
39秒前
40秒前
学习要认真喽完成签到 ,获得积分10
42秒前
平淡的翅膀完成签到,获得积分10
43秒前
江逾白发布了新的文献求助10
43秒前
Winter完成签到 ,获得积分10
47秒前
CJY完成签到,获得积分10
49秒前
江逾白完成签到,获得积分10
50秒前
51秒前
在水一方应助CJY采纳,获得10
53秒前
刻苦的冬易完成签到 ,获得积分10
55秒前
FashionBoy应助缓慢的藏鸟采纳,获得10
55秒前
少年啊发布了新的文献求助10
56秒前
Niki应助黄黄黄采纳,获得10
1分钟前
追寻的纸鹤完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
烟花应助小卢卢快闭嘴采纳,获得10
1分钟前
有趣的银完成签到,获得积分10
1分钟前
科研通AI2S应助无风风采纳,获得10
1分钟前
爆米花应助科研顺利采纳,获得10
1分钟前
chenlc971125完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
罗罗诺亚完成签到,获得积分10
1分钟前
哦噢藕发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639405
求助须知:如何正确求助?哪些是违规求助? 4748142
关于积分的说明 15006300
捐赠科研通 4797572
什么是DOI,文献DOI怎么找? 2563551
邀请新用户注册赠送积分活动 1522576
关于科研通互助平台的介绍 1482260