Dual attention dense convolutional network for intelligent fault diagnosis of spindle-rolling bearings

计算机科学 串联(数学) 卷积神经网络 人工智能 断层(地质) 块(置换群论) 特征(语言学) 对偶(语法数字) 模式识别(心理学) 深度学习 频道(广播) 代表(政治) 电信 数学 文学类 几何学 地质学 哲学 艺术 组合数学 政治 地震学 法学 语言学 政治学
作者
Jiang Su,Jianping Xuan,Jian Duan,Jian‐Bin Lin,Hongfei Tao,Qi Xia,Ruizhen Jing,Shoucong Xiong,Tielin Shi
出处
期刊:Journal of Vibration and Control [SAGE]
卷期号:27 (21-22): 2403-2419 被引量:17
标识
DOI:10.1177/1077546320961918
摘要

Over the past few years, deep learning–based techniques have been extensively and successfully adopted in the field of fault diagnosis. As the diagnosis tasks become more complicated, the structure of the traditional convolutional neural network (CNN) has to become deeper to deal with them, while the gradient of fault features may vanish within the deep network. In addition, all the features are treated equally in the traditional CNN, which cannot make the most of the representation power of CNN. Here, we proposed a method named dual attention dense convolutional network to handle these issues, which is constructed by the dense network and the dual attention block. On one hand, the dense connections and concatenation layers can reinforce the propagation of fault features among layers and mitigate the vanishing gradient phenomenon in the deep network. On the other hand, as the features flow through the channel attention and spatial attention within the dual attention block, this attention mechanism can learn which feature to emphasize or suppress and then obtain the cross-channel and cross-spatial weights of the features. These weights can make the most of the abundant information, elevating the expressive power of network. After passing through these dense and attention blocks, the generated high-level features are then fed into the final classification layer to obtain diagnosis results. The effectiveness of the dual attention dense convolutional network is validated by eight datasets of spindle bearings under various machinery conditions. Compared with eight other approaches including support vector machines, random forest, and six existing deep learning models, the results indicate that the proposed dual attention dense convolutional network possesses higher accuracy, fewer parameters and computations, and faster convergence under complex operational conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yvonne完成签到 ,获得积分10
1秒前
18635986106发布了新的文献求助10
1秒前
zhu完成签到,获得积分10
1秒前
2秒前
悠狸完成签到,获得积分10
2秒前
ykft发布了新的文献求助10
3秒前
li完成签到,获得积分10
3秒前
认真野狼完成签到,获得积分10
4秒前
终抵星空发布了新的文献求助10
4秒前
常常完成签到 ,获得积分10
4秒前
5秒前
fsznc1完成签到 ,获得积分0
5秒前
韩菡关注了科研通微信公众号
6秒前
6秒前
rodrisk完成签到 ,获得积分10
7秒前
7秒前
FFFFF应助武雨寒采纳,获得10
7秒前
科研狗完成签到 ,获得积分10
8秒前
zhu发布了新的文献求助10
8秒前
8秒前
8秒前
L1完成签到 ,获得积分10
9秒前
小李完成签到,获得积分10
10秒前
10秒前
czj发布了新的文献求助10
11秒前
12秒前
负责灵萱完成签到 ,获得积分10
12秒前
等待的凝芙完成签到,获得积分10
13秒前
小二郎应助来日方长采纳,获得10
13秒前
耶耶完成签到,获得积分10
14秒前
14秒前
15秒前
我在青年湖旁完成签到,获得积分10
15秒前
科研通AI6应助咸鱼采纳,获得10
16秒前
qqq发布了新的文献求助20
17秒前
文静的笑阳完成签到,获得积分10
17秒前
CipherSage应助Zh采纳,获得10
17秒前
18秒前
19秒前
shanlu完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600383
求助须知:如何正确求助?哪些是违规求助? 4686008
关于积分的说明 14841407
捐赠科研通 4676475
什么是DOI,文献DOI怎么找? 2538721
邀请新用户注册赠送积分活动 1505781
关于科研通互助平台的介绍 1471186