Dual attention dense convolutional network for intelligent fault diagnosis of spindle-rolling bearings

计算机科学 串联(数学) 卷积神经网络 人工智能 断层(地质) 块(置换群论) 特征(语言学) 对偶(语法数字) 模式识别(心理学) 深度学习 频道(广播) 代表(政治) 电信 数学 文学类 几何学 地质学 哲学 艺术 组合数学 政治 地震学 法学 语言学 政治学
作者
Jiang Su,Jianping Xuan,Jian Duan,Jian‐Bin Lin,Hongfei Tao,Qi Xia,Ruizhen Jing,Shoucong Xiong,Tielin Shi
出处
期刊:Journal of Vibration and Control [SAGE]
卷期号:27 (21-22): 2403-2419 被引量:17
标识
DOI:10.1177/1077546320961918
摘要

Over the past few years, deep learning–based techniques have been extensively and successfully adopted in the field of fault diagnosis. As the diagnosis tasks become more complicated, the structure of the traditional convolutional neural network (CNN) has to become deeper to deal with them, while the gradient of fault features may vanish within the deep network. In addition, all the features are treated equally in the traditional CNN, which cannot make the most of the representation power of CNN. Here, we proposed a method named dual attention dense convolutional network to handle these issues, which is constructed by the dense network and the dual attention block. On one hand, the dense connections and concatenation layers can reinforce the propagation of fault features among layers and mitigate the vanishing gradient phenomenon in the deep network. On the other hand, as the features flow through the channel attention and spatial attention within the dual attention block, this attention mechanism can learn which feature to emphasize or suppress and then obtain the cross-channel and cross-spatial weights of the features. These weights can make the most of the abundant information, elevating the expressive power of network. After passing through these dense and attention blocks, the generated high-level features are then fed into the final classification layer to obtain diagnosis results. The effectiveness of the dual attention dense convolutional network is validated by eight datasets of spindle bearings under various machinery conditions. Compared with eight other approaches including support vector machines, random forest, and six existing deep learning models, the results indicate that the proposed dual attention dense convolutional network possesses higher accuracy, fewer parameters and computations, and faster convergence under complex operational conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大威天龙发布了新的文献求助10
刚刚
linlin完成签到,获得积分10
1秒前
1秒前
鉨汏闫完成签到,获得积分10
1秒前
NexusExplorer应助maniac采纳,获得10
1秒前
1秒前
红叶发布了新的文献求助20
2秒前
莉莉发布了新的文献求助10
3秒前
4秒前
5秒前
幸福采柳发布了新的文献求助10
7秒前
雅文完成签到,获得积分10
7秒前
pzh完成签到 ,获得积分10
8秒前
9秒前
我是老大应助wsgdhz采纳,获得10
9秒前
10秒前
ccc完成签到,获得积分10
12秒前
13秒前
畅快山兰发布了新的文献求助10
13秒前
南昌黑人完成签到,获得积分10
13秒前
内向的青荷完成签到,获得积分10
13秒前
14秒前
14秒前
Orange应助白若可依采纳,获得10
16秒前
逆蝶完成签到,获得积分10
16秒前
xiuxiuxiuxiu完成签到,获得积分10
17秒前
安详怜蕾发布了新的文献求助10
17秒前
handan发布了新的文献求助10
18秒前
Vedia完成签到,获得积分10
20秒前
NexusExplorer应助jjamazing采纳,获得10
21秒前
21秒前
文艺水风完成签到 ,获得积分10
22秒前
幸福采柳完成签到,获得积分10
22秒前
帅气凝云完成签到 ,获得积分10
22秒前
23秒前
23秒前
汉堡包应助hahhh7采纳,获得10
23秒前
rachel-yue发布了新的文献求助50
24秒前
25秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3327916
求助须知:如何正确求助?哪些是违规求助? 2958108
关于积分的说明 8589214
捐赠科研通 2636402
什么是DOI,文献DOI怎么找? 1442937
科研通“疑难数据库(出版商)”最低求助积分说明 668449
邀请新用户注册赠送积分活动 655663