Reinforcement based mobile robot path planning with improved dynamic window approach in unknown environment

计算机科学 运动规划 机器人 人工智能 机器人学 移动机器人 强化学习 窗口(计算) 路径(计算) 功能(生物学) 领域(数学) 实时计算 数学 生物 操作系统 进化生物学 程序设计语言 纯数学
作者
Long-Wen Chang,Liang Shan,Chao Jiang,Yuewei Dai
出处
期刊:Autonomous Robots [Springer Nature]
卷期号:45 (1): 51-76 被引量:118
标识
DOI:10.1007/s10514-020-09947-4
摘要

Mobile robot path planning in an unknown environment is a fundamental and challenging problem in the field of robotics. Dynamic window approach (DWA) is an effective method of local path planning, however some of its evaluation functions are inadequate and the algorithm for choosing the weights of these functions is lacking, which makes it highly dependent on the global reference and prone to fail in an unknown environment. In this paper, an improved DWA based on Q-learning is proposed. First, the original evaluation functions are modified and extended by adding two new evaluation functions to enhance the performance of global navigation. Then, considering the balance of effectiveness and speed, we define the state space, action space and reward function of the adopted Q-learning algorithm for the robot motion planning. After that, the parameters of the proposed DWA are adaptively learned by Q-learning and a trained agent is obtained to adapt to the unknown environment. At last, by a series of comparative simulations, the proposed method shows higher navigation efficiency and successful rate in the complex unknown environment. The proposed method is also validated in experiments based on XQ-4 Pro robot to verify its navigation capability in both static and dynamic environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zfd完成签到,获得积分10
刚刚
顾矜应助空山采纳,获得10
刚刚
科研通AI6应助能干的明轩采纳,获得10
刚刚
刚刚
1秒前
2秒前
3秒前
小张真的困啦完成签到,获得积分10
3秒前
4秒前
4秒前
lilia完成签到,获得积分10
5秒前
一只小咸鱼完成签到,获得积分10
5秒前
6秒前
寒鸦应助杰杰小杰采纳,获得30
6秒前
6秒前
JamesPei应助刘晴川采纳,获得10
6秒前
6秒前
爆米花应助西瓜采纳,获得10
6秒前
7秒前
7秒前
8秒前
8秒前
树懒在橘子洲数星星完成签到,获得积分20
8秒前
8秒前
枫泾发布了新的文献求助10
9秒前
XSY完成签到,获得积分10
9秒前
9秒前
找文献的天才狗完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
香蕉觅云应助2Q采纳,获得10
10秒前
Tatw发布了新的文献求助10
10秒前
10秒前
10秒前
哈哈我完成签到,获得积分10
10秒前
HMethod发布了新的文献求助10
11秒前
chhe发布了新的文献求助10
11秒前
称心语风完成签到,获得积分10
11秒前
LIUAiwei发布了新的文献求助10
11秒前
丘比特应助稚生w采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624763
求助须知:如何正确求助?哪些是违规求助? 4710606
关于积分的说明 14951556
捐赠科研通 4778691
什么是DOI,文献DOI怎么找? 2553391
邀请新用户注册赠送积分活动 1515355
关于科研通互助平台的介绍 1475679