Reinforcement based mobile robot path planning with improved dynamic window approach in unknown environment

计算机科学 运动规划 机器人 人工智能 机器人学 移动机器人 强化学习 窗口(计算) 路径(计算) 功能(生物学) 领域(数学) 实时计算 数学 生物 操作系统 进化生物学 程序设计语言 纯数学
作者
Long-Wen Chang,Liang Shan,Chao Jiang,Yuewei Dai
出处
期刊:Autonomous Robots [Springer Nature]
卷期号:45 (1): 51-76 被引量:118
标识
DOI:10.1007/s10514-020-09947-4
摘要

Mobile robot path planning in an unknown environment is a fundamental and challenging problem in the field of robotics. Dynamic window approach (DWA) is an effective method of local path planning, however some of its evaluation functions are inadequate and the algorithm for choosing the weights of these functions is lacking, which makes it highly dependent on the global reference and prone to fail in an unknown environment. In this paper, an improved DWA based on Q-learning is proposed. First, the original evaluation functions are modified and extended by adding two new evaluation functions to enhance the performance of global navigation. Then, considering the balance of effectiveness and speed, we define the state space, action space and reward function of the adopted Q-learning algorithm for the robot motion planning. After that, the parameters of the proposed DWA are adaptively learned by Q-learning and a trained agent is obtained to adapt to the unknown environment. At last, by a series of comparative simulations, the proposed method shows higher navigation efficiency and successful rate in the complex unknown environment. The proposed method is also validated in experiments based on XQ-4 Pro robot to verify its navigation capability in both static and dynamic environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kaka完成签到 ,获得积分10
1秒前
2秒前
CodeCraft应助汪宇采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
科目三应助mu采纳,获得10
4秒前
爱听歌小蚂蚁关注了科研通微信公众号
4秒前
一种信仰完成签到 ,获得积分10
4秒前
4秒前
顾矜应助淡淡的觅松采纳,获得10
5秒前
8秒前
mount完成签到,获得积分10
10秒前
斯文败类应助long采纳,获得10
11秒前
12秒前
Orange应助作业对不起采纳,获得10
13秒前
13秒前
16秒前
mu发布了新的文献求助10
17秒前
风清扬应助科研通管家采纳,获得30
18秒前
蒹葭苍苍应助科研通管家采纳,获得10
19秒前
风清扬应助科研通管家采纳,获得30
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
蒹葭苍苍应助科研通管家采纳,获得10
19秒前
星辰大海应助科研通管家采纳,获得10
19秒前
风清扬应助科研通管家采纳,获得30
19秒前
星辰大海应助科研通管家采纳,获得10
19秒前
风清扬应助科研通管家采纳,获得30
19秒前
小郭子应助科研通管家采纳,获得10
19秒前
小郭子应助科研通管家采纳,获得10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
19秒前
桐桐应助科研通管家采纳,获得10
19秒前
19秒前
桐桐应助科研通管家采纳,获得10
19秒前
小郭子应助科研通管家采纳,获得10
19秒前
19秒前
小郭子应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742086
求助须知:如何正确求助?哪些是违规求助? 5405647
关于积分的说明 15343886
捐赠科研通 4883555
什么是DOI,文献DOI怎么找? 2625085
邀请新用户注册赠送积分活动 1573951
关于科研通互助平台的介绍 1530896