Surface soil moisture estimation at high spatial resolution by fusing synthetic aperture radar and optical remote sensing data

遥感 合成孔径雷达 含水量 环境科学 均方误差 图像分辨率 相关系数 土壤科学 计算机科学 地质学 数学 人工智能 统计 岩土工程 机器学习
作者
Nengcheng Chen,Bowen Cheng,Xiang Zhang,Chenjie Xing
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:14 (02): 1-1 被引量:3
标识
DOI:10.1117/1.jrs.14.024508
摘要

The difficulty of accurate and large-scale measurement for surface parameters limits the regional surface soil moisture (SSM) estimation using synthetic aperture radar (SAR). Moreover, the coarse resolution of soil moisture products generated by existing methods, which fuse SAR and passive microwave products, cannot fully satisfy the requirement of specific regional applications. To solve this problem, an SAR-optical data fusion method for soil moisture estimation (SOFSME) based on a cascade neural network is proposed in this study. SOFSME obtains surface parameters from historical soil moisture images and related environmental images to estimate a SSM image with high resolution at large scale from Sentinel-1A C-band SAR data. Validation experiments in single and multiple land-use type areas showed that the SOFSME performed best on bare soil areas with a median root mean square error of 0.0203. The median universal image quality index of estimated soil moisture image was 0.1454, which was better for single cropland areas than multi-land-use type areas. The Pearson correlation coefficient showed a median value of 0.7645 in both experiments. These results showed that the SOFSME had high accuracy, availability, and stability in regional soil moisture estimation. Compared with existing methods, the SOFSME can provide high-quality soil moisture images and does not directly depend on field measurement data. Thus, the proposed SOFSME method is of great value for high-resolution soil moisture estimation in more regional applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生椰拿铁发布了新的文献求助10
刚刚
fei完成签到 ,获得积分10
1秒前
田様应助开心超人采纳,获得10
1秒前
赘婿应助chyse采纳,获得10
2秒前
害羞的山柏完成签到,获得积分10
2秒前
afeifei发布了新的文献求助10
2秒前
务实盼波完成签到,获得积分10
3秒前
Cc完成签到,获得积分10
3秒前
博弈春秋发布了新的文献求助10
3秒前
3秒前
荔枝多酚完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
Japrin完成签到,获得积分10
5秒前
荔枝发布了新的文献求助10
5秒前
Hello应助ZDN采纳,获得10
5秒前
标致电源发布了新的文献求助10
6秒前
yar应助科研通管家采纳,获得10
6秒前
whatever应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
han应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
zwhy完成签到,获得积分10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
科研雷锋应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
Akim应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998421
求助须知:如何正确求助?哪些是违规求助? 3537865
关于积分的说明 11272824
捐赠科研通 3276939
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883818
科研通“疑难数据库(出版商)”最低求助积分说明 810014