Support Vector Machine Algorithm for SMS Spam Classification in The Telecommunication Industry

朴素贝叶斯分类器 支持向量机 计算机科学 机器学习 人工智能 短信服务 统计分类 算法 分类器(UML) 数据挖掘 电信
作者
Nilam Nur Amir Sjarif,Yazriwati Yahya,Suriayati Chuprat,Nurul Huda Firdaus Mohd Azmi
出处
期刊:International Journal on Advanced Science, Engineering and Information Technology [Insight Society]
卷期号:10 (2): 635-639 被引量:5
标识
DOI:10.18517/ijaseit.10.2.10175
摘要

In recent years, we have withnessed a dramatic increment volume in the number of mobile users grows in telecommunication industry. However, this leads to drastic increase to the number of spam SMS messages. Short Message Service (SMS) is considered one of the widely used communication in telecommunication service. In reality, most of the users ignore the spam because of the lower rate of SMS and limited amount of spam classification tools. In this paper, we propose a Support Vector Machine (SVM) algorithm for SMS Spam Classification. Support Vector Machine is considered as the one of the most effective for data mining techniques. The propose algorithm have been evaluated using public dataset from UCI machine learning repository. The performance achieved is compared with other three data mining techniques such as Naí¯ve Bayes, Multinominal Naí¯ve Bayes and K-Nearest Neighbor with the different number of K= 1,3 and 5. Based on the measuring factors like higher accuracy, less processing time, highest kappa statistics, low error and the lowest false positive instance, it’s been identified that Support Vector Machines (SVM) outperforms better than other classifiers and it is the most accurate classifier to detect and label the spam messages with an average an accuracy is 98.9%. Comparing both the error parameter overall, the highest error has been found on the algorithm KNN with K=3 and K=5. Whereas the model with less error is SVM followed by Multinominal Naí¯ve Bayes. Therefore, this propose method can be used as a best baseline for further comparison based on SMS spam classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
野性的小松鼠完成签到 ,获得积分10
刚刚
刚刚
Owen应助lango采纳,获得10
2秒前
杨一发布了新的文献求助10
2秒前
充电宝应助傲娇的海冬采纳,获得10
2秒前
我开始找你了完成签到,获得积分10
3秒前
3秒前
zxn发布了新的文献求助10
5秒前
无奈满天发布了新的文献求助10
5秒前
甜甜的半仙完成签到,获得积分10
5秒前
毛豆应助WJ采纳,获得10
6秒前
桐桐应助卷卷516采纳,获得10
6秒前
冲冲冲啊完成签到,获得积分10
6秒前
marymarychou完成签到,获得积分10
6秒前
6秒前
鳄鱼蛋完成签到,获得积分10
7秒前
LL666完成签到 ,获得积分10
8秒前
两个轮完成签到 ,获得积分10
8秒前
8秒前
陈66发布了新的文献求助10
8秒前
8秒前
隐形曼青应助steve采纳,获得10
8秒前
9秒前
冲冲冲啊发布了新的文献求助10
10秒前
may完成签到,获得积分20
10秒前
10秒前
时代更迭发布了新的文献求助10
11秒前
Akim应助牛乘风采纳,获得10
12秒前
kangkang发布了新的文献求助10
12秒前
14秒前
ddd发布了新的文献求助10
14秒前
may发布了新的文献求助10
15秒前
15秒前
CATstalker完成签到,获得积分10
15秒前
求求你了发布了新的文献求助30
16秒前
齐天大圣完成签到 ,获得积分10
16秒前
16秒前
nanxi88完成签到,获得积分10
17秒前
VDC应助aaswsdw采纳,获得30
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458644
求助须知:如何正确求助?哪些是违规求助? 3053442
关于积分的说明 9036584
捐赠科研通 2742678
什么是DOI,文献DOI怎么找? 1504484
科研通“疑难数据库(出版商)”最低求助积分说明 695312
邀请新用户注册赠送积分活动 694494