Support Vector Machine Algorithm for SMS Spam Classification in The Telecommunication Industry

朴素贝叶斯分类器 支持向量机 计算机科学 机器学习 人工智能 短信服务 统计分类 算法 分类器(UML) 数据挖掘 电信
作者
Nilam Nur Amir Sjarif,Yazriwati Yahya,Suriayati Chuprat,Nurul Huda Firdaus Mohd Azmi
出处
期刊:International Journal on Advanced Science, Engineering and Information Technology [Insight Society]
卷期号:10 (2): 635-639 被引量:5
标识
DOI:10.18517/ijaseit.10.2.10175
摘要

In recent years, we have withnessed a dramatic increment volume in the number of mobile users grows in telecommunication industry. However, this leads to drastic increase to the number of spam SMS messages. Short Message Service (SMS) is considered one of the widely used communication in telecommunication service. In reality, most of the users ignore the spam because of the lower rate of SMS and limited amount of spam classification tools. In this paper, we propose a Support Vector Machine (SVM) algorithm for SMS Spam Classification. Support Vector Machine is considered as the one of the most effective for data mining techniques. The propose algorithm have been evaluated using public dataset from UCI machine learning repository. The performance achieved is compared with other three data mining techniques such as Naí¯ve Bayes, Multinominal Naí¯ve Bayes and K-Nearest Neighbor with the different number of K= 1,3 and 5. Based on the measuring factors like higher accuracy, less processing time, highest kappa statistics, low error and the lowest false positive instance, it’s been identified that Support Vector Machines (SVM) outperforms better than other classifiers and it is the most accurate classifier to detect and label the spam messages with an average an accuracy is 98.9%. Comparing both the error parameter overall, the highest error has been found on the algorithm KNN with K=3 and K=5. Whereas the model with less error is SVM followed by Multinominal Naí¯ve Bayes. Therefore, this propose method can be used as a best baseline for further comparison based on SMS spam classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
儒雅HR完成签到,获得积分10
1秒前
xtt发布了新的文献求助10
1秒前
penghaha完成签到,获得积分10
1秒前
威武鞅完成签到,获得积分10
3秒前
3秒前
3秒前
redking发布了新的文献求助30
4秒前
轻松的惜芹应助lunjianchi采纳,获得10
5秒前
科研通AI5应助Liixy采纳,获得10
6秒前
6秒前
8秒前
嗯对发布了新的文献求助10
9秒前
Lily完成签到,获得积分10
10秒前
dagongren完成签到,获得积分10
10秒前
cassie发布了新的文献求助10
10秒前
帅气完成签到,获得积分10
12秒前
gc发布了新的文献求助10
12秒前
欢呼的明雪完成签到,获得积分10
14秒前
15秒前
搜集达人应助cassie采纳,获得10
16秒前
舍予有服完成签到,获得积分10
19秒前
pp完成签到,获得积分10
20秒前
陈兵发布了新的文献求助10
20秒前
北海未暖完成签到,获得积分10
21秒前
唐唐发布了新的文献求助10
22秒前
mc应助rrrrr采纳,获得10
23秒前
yaoweiqi完成签到,获得积分10
24秒前
27秒前
lbyscu完成签到 ,获得积分10
29秒前
疯狂的炳发布了新的文献求助10
30秒前
31秒前
维尼发布了新的文献求助10
35秒前
科目三应助xtt采纳,获得10
36秒前
多情鑫鹏发布了新的文献求助10
37秒前
大佬完成签到,获得积分10
37秒前
37秒前
完美世界应助唐唐采纳,获得10
38秒前
38秒前
铁男卡卡罗特完成签到,获得积分10
39秒前
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967419
求助须知:如何正确求助?哪些是违规求助? 3512730
关于积分的说明 11164792
捐赠科研通 3247704
什么是DOI,文献DOI怎么找? 1793978
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517