TR-GAN: thermal to RGB face synthesis with generative adversarial network for cross-modal face recognition

面子(社会学概念) 情态动词 计算机科学 人工智能 面部识别系统 发电机(电路理论) RGB颜色模型 领域(数学分析) 图像翻译 计算机视觉 图像(数学) 模式识别(心理学) 物理 数学分析 社会学 功率(物理) 化学 高分子化学 量子力学 社会科学 数学
作者
Landry Kezebou,Victor Oludare,Karen Panetta,Sos S. Agaian
标识
DOI:10.1117/12.2558166
摘要

Unlike RBG cameras, thermal cameras perform well under very low lighting conditions and can capture information beyond the human visible spectrum. This provides many advantages for security and surveillance applications. However, performing face recognition tasks in the thermal domain is very challenging given the limited visual information embedded in thermal images and the inherent similarities among facial heat maps. Attempting to perform recognition across modalities, such as recognizing a face captured in the thermal domain given the corresponding visible light domain ground truth database or vice versa is also a challenge. In this paper, a Thermal to RGB Generative Adversarial Network (TRGAN) to automatically synthesize face images captured in the thermal domain, to their RBG counterparts, with a goal of reducing current inter-domain gaps and significantly improving cross-modal facial recognition capabilities is proposed. Experimental results on the TUFTS Face Dataset using the VGG-Face recognition model without retraining, demonstrates that performing image translation with the proposed TR-GAN model almost doubles the cross-modal recognition accuracy and also performs better than other state-of-the-art GAN models on the same task. The generator in our network uses a UNET like architecture with cascaded-in-cascaded blocks to reuse features from earlier convolutions, which helps generate high quality images. To further guide the generator to synthesize images with fine details, we optimize a training loss as the weighted sum of the perceptual, adversarial, and cycle-consistent loss. Simulation results demonstrate that the proposed model generates more realistic and more visually appealing images, with finer details and better reconstruction of intricate details such sunglasses and facial emotions, than similar GAN models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼鱼完成签到 ,获得积分10
刚刚
HHH发布了新的文献求助10
4秒前
7秒前
8秒前
小木完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
11秒前
12秒前
背后大白关注了科研通微信公众号
13秒前
虚幻的薯片完成签到 ,获得积分10
13秒前
chen发布了新的文献求助10
14秒前
14秒前
www发布了新的文献求助10
14秒前
小翟不宅完成签到,获得积分10
15秒前
研友_V8RQEZ完成签到,获得积分10
16秒前
16秒前
16秒前
洁净的谷兰完成签到 ,获得积分10
16秒前
HIT_C发布了新的文献求助30
16秒前
17秒前
赘婿应助包包采纳,获得10
18秒前
Owen应助wer采纳,获得10
18秒前
123456完成签到,获得积分10
18秒前
Hello应助shu_yhz采纳,获得10
20秒前
小翟不宅发布了新的文献求助10
20秒前
kk驳回了morris应助
20秒前
chen完成签到,获得积分20
20秒前
乐乐完成签到,获得积分10
21秒前
tjseilcy发布了新的文献求助10
21秒前
HIT_C完成签到,获得积分10
22秒前
刘大力发布了新的文献求助10
22秒前
23秒前
24秒前
24秒前
领导范儿应助研友_8R5X3Z采纳,获得10
25秒前
26秒前
ChenChen发布了新的文献求助10
27秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222324
求助须知:如何正确求助?哪些是违规求助? 2870919
关于积分的说明 8173063
捐赠科研通 2537948
什么是DOI,文献DOI怎么找? 1370068
科研通“疑难数据库(出版商)”最低求助积分说明 645666
邀请新用户注册赠送积分活动 619475