清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

TR-GAN: thermal to RGB face synthesis with generative adversarial network for cross-modal face recognition

面子(社会学概念) 情态动词 计算机科学 人工智能 面部识别系统 发电机(电路理论) RGB颜色模型 领域(数学分析) 图像翻译 计算机视觉 图像(数学) 模式识别(心理学) 物理 数学分析 社会学 功率(物理) 化学 高分子化学 量子力学 社会科学 数学
作者
Landry Kezebou,Victor Oludare,Karen Panetta,Sos S. Agaian
标识
DOI:10.1117/12.2558166
摘要

Unlike RBG cameras, thermal cameras perform well under very low lighting conditions and can capture information beyond the human visible spectrum. This provides many advantages for security and surveillance applications. However, performing face recognition tasks in the thermal domain is very challenging given the limited visual information embedded in thermal images and the inherent similarities among facial heat maps. Attempting to perform recognition across modalities, such as recognizing a face captured in the thermal domain given the corresponding visible light domain ground truth database or vice versa is also a challenge. In this paper, a Thermal to RGB Generative Adversarial Network (TRGAN) to automatically synthesize face images captured in the thermal domain, to their RBG counterparts, with a goal of reducing current inter-domain gaps and significantly improving cross-modal facial recognition capabilities is proposed. Experimental results on the TUFTS Face Dataset using the VGG-Face recognition model without retraining, demonstrates that performing image translation with the proposed TR-GAN model almost doubles the cross-modal recognition accuracy and also performs better than other state-of-the-art GAN models on the same task. The generator in our network uses a UNET like architecture with cascaded-in-cascaded blocks to reuse features from earlier convolutions, which helps generate high quality images. To further guide the generator to synthesize images with fine details, we optimize a training loss as the weighted sum of the perceptual, adversarial, and cycle-consistent loss. Simulation results demonstrate that the proposed model generates more realistic and more visually appealing images, with finer details and better reconstruction of intricate details such sunglasses and facial emotions, than similar GAN models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
沙海沉戈完成签到,获得积分0
11秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
jarrykim完成签到,获得积分10
31秒前
1分钟前
1分钟前
hongtao发布了新的文献求助10
1分钟前
nav完成签到 ,获得积分10
1分钟前
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
Owen应助科研通管家采纳,获得10
2分钟前
海藏进星辰完成签到,获得积分10
2分钟前
卷卷完成签到,获得积分10
2分钟前
2分钟前
ktw完成签到,获得积分10
2分钟前
kmzzy完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
一条摆摆的沙丁鱼完成签到 ,获得积分10
5分钟前
6分钟前
yyf发布了新的文献求助10
6分钟前
claud完成签到 ,获得积分0
6分钟前
yyf完成签到,获得积分10
6分钟前
ffdhdh完成签到,获得积分10
6分钟前
白天科室黑奴and晚上实验室牛马完成签到 ,获得积分10
8分钟前
8分钟前
Akim应助亦风采纳,获得10
8分钟前
8分钟前
亦风发布了新的文献求助10
8分钟前
情怀应助刘紫媛采纳,获得10
8分钟前
科研通AI2S应助亦风采纳,获得10
8分钟前
亦风完成签到,获得积分10
8分钟前
8分钟前
偷得浮生半日闲完成签到 ,获得积分10
9分钟前
jintian完成签到 ,获得积分10
9分钟前
9分钟前
fufufu123完成签到 ,获得积分10
9分钟前
桐桐应助科研通管家采纳,获得10
10分钟前
puzhongjiMiQ完成签到,获得积分10
10分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990469
求助须知:如何正确求助?哪些是违规求助? 3532166
关于积分的说明 11256513
捐赠科研通 3271046
什么是DOI,文献DOI怎么找? 1805207
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234