亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data Efficient and Weakly Supervised Computational Pathology on Whole Slide Images

计算机科学 人工智能 可解释性 数字化病理学 聚类分析 机器学习 鉴定(生物学) 深度学习 模式识别(心理学) 特征(语言学) 领域(数学) 监督学习 人工神经网络 生物 植物 哲学 纯数学 语言学 数学
作者
Ming Y. Lu,Drew F. K. Williamson,Tiffany Chen,Richard J. Chen,Matteo Barbieri,Faisal Mahmood
摘要

The rapidly emerging field of computational pathology has the potential to enable objective diagnosis, therapeutic response prediction and identification of new morphological features of clinical relevance. However, deep learning-based computational pathology approaches either require manual annotation of gigapixel whole slide images (WSIs) in fully-supervised settings or thousands of WSIs with slide-level labels in a weakly-supervised setting. Moreover, whole slide level computational pathology methods also suffer from domain adaptation and interpretability issues. These challenges have prevented the broad adaptation of computational pathology for clinical and research purposes. Here we present CLAM - Clustering-constrained attention multiple instance learning, an easy-to-use, high-throughput, and interpretable WSI-level processing and learning method that only requires slide-level labels while being data efficient, adaptable and capable of handling multi-class subtyping problems. CLAM is a deep-learning-based weakly-supervised method that uses attention-based learning to automatically identify sub-regions of high diagnostic value in order to accurately classify the whole slide, while also utilizing instance-level clustering over the representative regions identified to constrain and refine the feature space. In three separate analyses, we demonstrate the data efficiency and adaptability of CLAM and its superior performance over standard weakly-supervised classification. We demonstrate that CLAM models are interpretable and can be used to identify well-known and new morphological features. We further show that models trained using CLAM are adaptable to independent test cohorts, cell phone microscopy images, and biopsies. CLAM is a general-purpose and adaptable method that can be used for a variety of different computational pathology tasks in both clinical and research settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
归尘应助科研通管家采纳,获得10
37秒前
56秒前
57秒前
严斩发布了新的文献求助10
59秒前
严斩完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
皮老师完成签到,获得积分10
2分钟前
孟寐以求完成签到 ,获得积分10
2分钟前
2分钟前
Who发布了新的文献求助10
2分钟前
热情依白应助科研通管家采纳,获得10
2分钟前
3分钟前
eason完成签到,获得积分10
3分钟前
Cupid发布了新的文献求助30
3分钟前
theo完成签到 ,获得积分10
3分钟前
andrele发布了新的文献求助10
3分钟前
糖伯虎完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
JeremyChi发布了新的文献求助10
4分钟前
英俊的铭应助Who采纳,获得10
4分钟前
半斤应助JeremyChi采纳,获得10
5分钟前
逻辑猫发布了新的文献求助20
5分钟前
是述不是沭完成签到,获得积分10
5分钟前
滕皓轩完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
7分钟前
7分钟前
Who发布了新的文献求助10
7分钟前
大个应助Who采纳,获得10
7分钟前
LGA1700完成签到,获得积分10
7分钟前
7分钟前
Mr-Li-Happy发布了新的文献求助10
7分钟前
Mr-Li-Happy完成签到,获得积分10
8分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
8分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307419
求助须知:如何正确求助?哪些是违规求助? 2941030
关于积分的说明 8500259
捐赠科研通 2615428
什么是DOI,文献DOI怎么找? 1428900
科研通“疑难数据库(出版商)”最低求助积分说明 663595
邀请新用户注册赠送积分活动 648461