Multi-level Glioma Segmentation using 3D U-Net Combined Attention Mechanism with Atrous Convolution

分割 计算机科学 人工智能 假阳性悖论 特征(语言学) 卷积(计算机科学) 卷积神经网络 残余物 图像分割 特征提取 模式识别(心理学) 人工神经网络 算法 语言学 哲学
作者
Jianhong Cheng,Jin Liu,Liangliang Liu,Yi Pan,Jianxin Wang
出处
期刊:Bioinformatics and Biomedicine 被引量:20
标识
DOI:10.1109/bibm47256.2019.8983092
摘要

Accurate segmentation of glioma from 3D medical images is vital to numerous clinical endpoints. While manual segmentation is subjective and time-consuming, fully automated extraction is quite imperative and challenging due to the intrinsic heterogeneity of tumor structures. In this study, we propose a multi-level glioma segmentation framework, 3D Residual-Attention-Atrous U-Net (RAAU-Net), using 3D U-Net combined attention mechanism with atrous convolution. The 3D RAAU-Net can extract contextual information by combining low- and high-resolution feature maps. The attention mechanism is embedded in each skip connection layer of 3D RAAU-Net to enhance feature representations. Meanwhile, the atrous convolution is adopted in the whole network architecture to incorporate large and rich semantic information. Furthermore, we design a new training scheme to reduce false positives and enhance generalization. Eventually, our proposed segmentation method is evaluated on the validation dataset from the Multimodal Brain Tumor Image Segmentation Challenge (BraTS) 2018 and achieve a competitive result with average Dice score of 88% for the whole tumor, 79% for the tumor core and 73% for the enhancing tumor, respectively. Quantitative results and visual analysis have proven that these improvements in 3D RAAU-Net are effective and achieve a better segmentation accuracy compared with the baseline.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BowieHuang应助一团小煤球采纳,获得10
1秒前
zhuyi_6695给zhuyi_6695的求助进行了留言
2秒前
白桃乌龙茶完成签到,获得积分10
2秒前
开心的绮玉完成签到,获得积分10
2秒前
英俊的晟睿完成签到,获得积分10
3秒前
宋浩奇完成签到 ,获得积分10
4秒前
4秒前
WhiteCaramel发布了新的文献求助10
5秒前
5秒前
10秒前
毕业完成签到,获得积分20
11秒前
11秒前
蓦然发布了新的文献求助10
11秒前
星辰大海应助linlin采纳,获得10
13秒前
13秒前
原子完成签到,获得积分10
14秒前
14秒前
15秒前
汉堡包应助龙龍泷采纳,获得30
16秒前
17秒前
18秒前
FashionBoy应助hjc采纳,获得30
18秒前
20秒前
CipherSage应助沉静的友灵采纳,获得10
20秒前
oh发布了新的文献求助10
20秒前
21秒前
充电宝应助TJ采纳,获得30
22秒前
Cy发布了新的文献求助10
23秒前
小王要努力完成签到,获得积分10
23秒前
24秒前
小青椒应助hbgsns采纳,获得30
26秒前
云等道完成签到 ,获得积分10
27秒前
嘿嘿发布了新的文献求助10
27秒前
丽丽丽完成签到,获得积分10
27秒前
28秒前
龙龍泷发布了新的文献求助30
28秒前
29秒前
BowieHuang应助嘻嘻采纳,获得10
29秒前
L_Gary完成签到 ,获得积分10
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563503
求助须知:如何正确求助?哪些是违规求助? 4648366
关于积分的说明 14684601
捐赠科研通 4590315
什么是DOI,文献DOI怎么找? 2518435
邀请新用户注册赠送积分活动 1491125
关于科研通互助平台的介绍 1462426