Multi-level Glioma Segmentation using 3D U-Net Combined Attention Mechanism with Atrous Convolution

分割 计算机科学 人工智能 假阳性悖论 特征(语言学) 卷积(计算机科学) 卷积神经网络 残余物 图像分割 特征提取 模式识别(心理学) 人工神经网络 算法 哲学 语言学
作者
Jianhong Cheng,Jin Liu,Liangliang Liu,Yi Pan,Jianxin Wang
出处
期刊:Bioinformatics and Biomedicine 被引量:20
标识
DOI:10.1109/bibm47256.2019.8983092
摘要

Accurate segmentation of glioma from 3D medical images is vital to numerous clinical endpoints. While manual segmentation is subjective and time-consuming, fully automated extraction is quite imperative and challenging due to the intrinsic heterogeneity of tumor structures. In this study, we propose a multi-level glioma segmentation framework, 3D Residual-Attention-Atrous U-Net (RAAU-Net), using 3D U-Net combined attention mechanism with atrous convolution. The 3D RAAU-Net can extract contextual information by combining low- and high-resolution feature maps. The attention mechanism is embedded in each skip connection layer of 3D RAAU-Net to enhance feature representations. Meanwhile, the atrous convolution is adopted in the whole network architecture to incorporate large and rich semantic information. Furthermore, we design a new training scheme to reduce false positives and enhance generalization. Eventually, our proposed segmentation method is evaluated on the validation dataset from the Multimodal Brain Tumor Image Segmentation Challenge (BraTS) 2018 and achieve a competitive result with average Dice score of 88% for the whole tumor, 79% for the tumor core and 73% for the enhancing tumor, respectively. Quantitative results and visual analysis have proven that these improvements in 3D RAAU-Net are effective and achieve a better segmentation accuracy compared with the baseline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
duizhang发布了新的文献求助30
3秒前
4秒前
不要加糖发布了新的文献求助10
4秒前
菠萝派发布了新的文献求助10
4秒前
搜集达人应助qiuqiu采纳,获得30
5秒前
7秒前
可爱的函函应助嘻嘻采纳,获得10
8秒前
Wzh发布了新的文献求助30
8秒前
方向发布了新的文献求助10
9秒前
精明的忆灵完成签到,获得积分10
9秒前
9秒前
sdd完成签到,获得积分10
10秒前
10秒前
10秒前
金皮卡完成签到,获得积分10
12秒前
扎心应助爱笑的稀采纳,获得10
13秒前
13秒前
追寻荔枝发布了新的文献求助10
14秒前
14秒前
看看发布了新的文献求助10
16秒前
Z1987完成签到,获得积分10
16秒前
我爱科研完成签到 ,获得积分10
17秒前
17秒前
19秒前
hcjxj完成签到,获得积分10
20秒前
SYLH应助阚钲翰采纳,获得10
20秒前
CipherSage应助追寻荔枝采纳,获得10
21秒前
21秒前
21秒前
21秒前
elivsZhou发布了新的文献求助200
23秒前
25秒前
肖雪依发布了新的文献求助10
26秒前
高兴123发布了新的文献求助10
27秒前
Singularity应助科研通管家采纳,获得10
28秒前
28秒前
wanci应助科研通管家采纳,获得10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956068
求助须知:如何正确求助?哪些是违规求助? 3502250
关于积分的说明 11106925
捐赠科研通 3232714
什么是DOI,文献DOI怎么找? 1787067
邀请新用户注册赠送积分活动 870375
科研通“疑难数据库(出版商)”最低求助积分说明 801994