Multi-level Glioma Segmentation using 3D U-Net Combined Attention Mechanism with Atrous Convolution

分割 计算机科学 人工智能 假阳性悖论 特征(语言学) 卷积(计算机科学) 卷积神经网络 残余物 图像分割 特征提取 模式识别(心理学) 人工神经网络 算法 哲学 语言学
作者
Jianhong Cheng,Jin Liu,Liangliang Liu,Yi Pan,Jianxin Wang
出处
期刊:Bioinformatics and Biomedicine 被引量:20
标识
DOI:10.1109/bibm47256.2019.8983092
摘要

Accurate segmentation of glioma from 3D medical images is vital to numerous clinical endpoints. While manual segmentation is subjective and time-consuming, fully automated extraction is quite imperative and challenging due to the intrinsic heterogeneity of tumor structures. In this study, we propose a multi-level glioma segmentation framework, 3D Residual-Attention-Atrous U-Net (RAAU-Net), using 3D U-Net combined attention mechanism with atrous convolution. The 3D RAAU-Net can extract contextual information by combining low- and high-resolution feature maps. The attention mechanism is embedded in each skip connection layer of 3D RAAU-Net to enhance feature representations. Meanwhile, the atrous convolution is adopted in the whole network architecture to incorporate large and rich semantic information. Furthermore, we design a new training scheme to reduce false positives and enhance generalization. Eventually, our proposed segmentation method is evaluated on the validation dataset from the Multimodal Brain Tumor Image Segmentation Challenge (BraTS) 2018 and achieve a competitive result with average Dice score of 88% for the whole tumor, 79% for the tumor core and 73% for the enhancing tumor, respectively. Quantitative results and visual analysis have proven that these improvements in 3D RAAU-Net are effective and achieve a better segmentation accuracy compared with the baseline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哒哒发布了新的文献求助10
刚刚
刚刚
zk_orange发布了新的文献求助10
1秒前
1秒前
lgx完成签到,获得积分10
1秒前
小研发布了新的文献求助10
1秒前
PP应助含糊的山兰采纳,获得10
1秒前
溪流冲浪发布了新的文献求助10
2秒前
2秒前
英俊的铭应助翁怜晴采纳,获得10
3秒前
3秒前
3秒前
4秒前
超帅的碱应助Charles采纳,获得10
4秒前
4秒前
自由天抒应助Moe采纳,获得10
5秒前
热心子轩应助和谐念寒采纳,获得10
5秒前
深情安青应助guijunmola采纳,获得10
5秒前
5秒前
马铭泽发布了新的文献求助10
6秒前
深情安青应助困困采纳,获得10
6秒前
6秒前
皖元槐发布了新的文献求助10
6秒前
orixero应助daheeeee采纳,获得10
7秒前
香蕉觅云应助哒哒采纳,获得10
8秒前
8秒前
yayiya发布了新的文献求助10
8秒前
9秒前
田様应助害羞的山柏采纳,获得10
9秒前
beyoo完成签到,获得积分10
9秒前
蒙豆儿发布了新的文献求助10
9秒前
殊荣发布了新的文献求助10
10秒前
10秒前
无花果应助三七采纳,获得10
11秒前
王小茹完成签到,获得积分10
11秒前
11秒前
11秒前
kmkz发布了新的文献求助10
12秒前
嘉1612完成签到,获得积分10
12秒前
钟馗发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575607
求助须知:如何正确求助?哪些是违规求助? 3995066
关于积分的说明 12367556
捐赠科研通 3668746
什么是DOI,文献DOI怎么找? 2021988
邀请新用户注册赠送积分活动 1056005
科研通“疑难数据库(出版商)”最低求助积分说明 943343