A hybrid load forecasting model based on support vector machine with intelligent methods for feature selection and parameter optimization

支持向量机 粒子群优化 计算机科学 特征选择 人工智能 电力系统 相关向量机 数据挖掘 机器学习 冗余(工程) 功率(物理) 量子力学 操作系统 物理
作者
Yeming Dai,Pei Zhao
出处
期刊:Applied Energy [Elsevier BV]
卷期号:279: 115332-115332 被引量:134
标识
DOI:10.1016/j.apenergy.2020.115332
摘要

Abstract Accurate power load forecasting contributes to guaranteeing safe dispatch and stable operation of a power system. As a great forecasting tool, support vector machine is widely used in power load forecasting. However, due to the rapid development of information technology, the prediction result of simple support vector machine is no longer accurate enough to forecast in the smart grid. To enhance the prediction accuracy, this paper makes some improvements on support vector machine, and proposes a hybrid model integrated with intelligent methods for feature selection and parameter optimization. Firstly, real-time price becomes an important influencing factor of power load as people increasingly rely on demand and real-time price to adjust their electricity consumption patterns. Thus, real-time price, together with other factors that affect power load, is taken as a candidate feature, and minimal redundancy maximal relevance is applied to derive informative features from candidate features. Secondly, as for another feature, the historical load sequence, to make its selection more general, this paper employs the weighted gray relation projection algorithm for holidays to be predicted. Finally, second-order oscillation and repulsion particle swarm optimization is used for optimizing parameters of support vector machine. Moreover, the proposed model is tested via simulations on datasets of Singapore. By comparing prediction results of the proposed model, the support vector machine before improvement and other three forecasting models, this paper confirms that the improvements on support vector machine are effective, and the proposed model outperforms the other forecasting models in aspect of accuracy, stability and effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旺仔发布了新的文献求助10
刚刚
misa发布了新的文献求助10
刚刚
YuxiaoDang关注了科研通微信公众号
刚刚
2秒前
2秒前
qiuqiu完成签到,获得积分10
3秒前
小马甲应助吐个泡泡采纳,获得10
4秒前
LLLL发布了新的文献求助10
4秒前
5秒前
5秒前
英俊的铭应助零源采纳,获得10
6秒前
kekeli发布了新的文献求助30
6秒前
小小小罗wy完成签到,获得积分10
6秒前
脑洞疼应助codecow采纳,获得10
7秒前
Lucas应助123lura采纳,获得10
7秒前
556发布了新的文献求助10
7秒前
田様应助浮熙采纳,获得10
8秒前
FashionBoy应助搞怪梦寒采纳,获得10
8秒前
幽默服饰完成签到,获得积分10
8秒前
酷波er应助summer采纳,获得30
8秒前
Micheal完成签到,获得积分10
8秒前
搜集达人应助旺仔采纳,获得10
8秒前
midokaori发布了新的文献求助10
10秒前
标致伟帮完成签到,获得积分10
10秒前
新新发布了新的文献求助30
10秒前
酷波er应助vidi采纳,获得10
11秒前
汉堡包应助震动的问寒采纳,获得10
11秒前
完美世界应助meimale采纳,获得30
11秒前
14秒前
HMF关闭了HMF文献求助
15秒前
拾寒完成签到,获得积分10
15秒前
呆萌听兰完成签到,获得积分10
15秒前
单纯芹菜完成签到,获得积分10
16秒前
16秒前
热爱生活的打工人完成签到,获得积分10
16秒前
李爱国应助spike采纳,获得20
16秒前
烟花应助认真的恶天采纳,获得10
17秒前
情怀应助超帅沂采纳,获得10
18秒前
无花果应助lilililili采纳,获得10
18秒前
轻松的璐啦啦完成签到 ,获得积分10
19秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961408
求助须知:如何正确求助?哪些是违规求助? 3507744
关于积分的说明 11137921
捐赠科研通 3240204
什么是DOI,文献DOI怎么找? 1790848
邀请新用户注册赠送积分活动 872587
科研通“疑难数据库(出版商)”最低求助积分说明 803288