A hybrid load forecasting model based on support vector machine with intelligent methods for feature selection and parameter optimization

支持向量机 粒子群优化 计算机科学 特征选择 人工智能 电力系统 相关向量机 数据挖掘 机器学习 冗余(工程) 功率(物理) 量子力学 操作系统 物理
作者
Yeming Dai,Pei Zhao
出处
期刊:Applied Energy [Elsevier]
卷期号:279: 115332-115332 被引量:134
标识
DOI:10.1016/j.apenergy.2020.115332
摘要

Abstract Accurate power load forecasting contributes to guaranteeing safe dispatch and stable operation of a power system. As a great forecasting tool, support vector machine is widely used in power load forecasting. However, due to the rapid development of information technology, the prediction result of simple support vector machine is no longer accurate enough to forecast in the smart grid. To enhance the prediction accuracy, this paper makes some improvements on support vector machine, and proposes a hybrid model integrated with intelligent methods for feature selection and parameter optimization. Firstly, real-time price becomes an important influencing factor of power load as people increasingly rely on demand and real-time price to adjust their electricity consumption patterns. Thus, real-time price, together with other factors that affect power load, is taken as a candidate feature, and minimal redundancy maximal relevance is applied to derive informative features from candidate features. Secondly, as for another feature, the historical load sequence, to make its selection more general, this paper employs the weighted gray relation projection algorithm for holidays to be predicted. Finally, second-order oscillation and repulsion particle swarm optimization is used for optimizing parameters of support vector machine. Moreover, the proposed model is tested via simulations on datasets of Singapore. By comparing prediction results of the proposed model, the support vector machine before improvement and other three forecasting models, this paper confirms that the improvements on support vector machine are effective, and the proposed model outperforms the other forecasting models in aspect of accuracy, stability and effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyy发布了新的文献求助10
刚刚
笨笨的诗槐完成签到 ,获得积分10
刚刚
机灵若魔完成签到,获得积分10
刚刚
机灵柚子应助雪白的觅松采纳,获得20
1秒前
啦啦啦发布了新的文献求助10
1秒前
栀子茉莉完成签到,获得积分10
1秒前
跳跃的冷卉完成签到 ,获得积分10
2秒前
isaac217完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
zdesfsfa完成签到,获得积分10
3秒前
搜集达人应助lily采纳,获得10
3秒前
清晨完成签到 ,获得积分10
3秒前
抵澳报了完成签到,获得积分0
3秒前
冰山一脚尖完成签到,获得积分10
4秒前
xiyueQAQ关注了科研通微信公众号
4秒前
jason0023完成签到,获得积分10
4秒前
AJIJDKDN完成签到,获得积分10
4秒前
4秒前
4秒前
敬之发布了新的文献求助10
5秒前
标致幻竹完成签到,获得积分10
5秒前
勤奋帅帅完成签到,获得积分10
6秒前
苏silence发布了新的文献求助80
6秒前
6秒前
大饼完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
rinki完成签到,获得积分10
7秒前
8秒前
8秒前
冷茗完成签到,获得积分10
8秒前
9秒前
张垚发布了新的文献求助10
9秒前
梅耀寰发布了新的文献求助10
9秒前
靓丽幻梅完成签到,获得积分10
9秒前
研友_VZG7GZ应助nn采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017