亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A hybrid load forecasting model based on support vector machine with intelligent methods for feature selection and parameter optimization

支持向量机 粒子群优化 计算机科学 特征选择 人工智能 电力系统 相关向量机 数据挖掘 机器学习 冗余(工程) 功率(物理) 量子力学 操作系统 物理
作者
Yeming Dai,Pei Zhao
出处
期刊:Applied Energy [Elsevier]
卷期号:279: 115332-115332 被引量:134
标识
DOI:10.1016/j.apenergy.2020.115332
摘要

Abstract Accurate power load forecasting contributes to guaranteeing safe dispatch and stable operation of a power system. As a great forecasting tool, support vector machine is widely used in power load forecasting. However, due to the rapid development of information technology, the prediction result of simple support vector machine is no longer accurate enough to forecast in the smart grid. To enhance the prediction accuracy, this paper makes some improvements on support vector machine, and proposes a hybrid model integrated with intelligent methods for feature selection and parameter optimization. Firstly, real-time price becomes an important influencing factor of power load as people increasingly rely on demand and real-time price to adjust their electricity consumption patterns. Thus, real-time price, together with other factors that affect power load, is taken as a candidate feature, and minimal redundancy maximal relevance is applied to derive informative features from candidate features. Secondly, as for another feature, the historical load sequence, to make its selection more general, this paper employs the weighted gray relation projection algorithm for holidays to be predicted. Finally, second-order oscillation and repulsion particle swarm optimization is used for optimizing parameters of support vector machine. Moreover, the proposed model is tested via simulations on datasets of Singapore. By comparing prediction results of the proposed model, the support vector machine before improvement and other three forecasting models, this paper confirms that the improvements on support vector machine are effective, and the proposed model outperforms the other forecasting models in aspect of accuracy, stability and effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
小二郎应助卓头OvQ采纳,获得10
48秒前
1分钟前
2分钟前
奋斗橘子完成签到,获得积分10
2分钟前
汉堡包应助奋斗橘子采纳,获得10
2分钟前
失眠的香蕉完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
h5发布了新的文献求助10
3分钟前
充电宝应助牧无声采纳,获得10
3分钟前
h5完成签到,获得积分10
3分钟前
盛景洲发布了新的文献求助10
3分钟前
动人的飞飞完成签到,获得积分10
4分钟前
科研通AI2S应助我心冥冥采纳,获得10
4分钟前
Disay666完成签到,获得积分10
5分钟前
小脚丫完成签到 ,获得积分10
5分钟前
dangdang601发布了新的文献求助10
5分钟前
天天哥哥完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
子阅发布了新的文献求助10
5分钟前
5分钟前
5分钟前
卓头OvQ发布了新的文献求助10
6分钟前
cxwong发布了新的文献求助10
6分钟前
隐形曼青应助cxwong采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
牧无声发布了新的文献求助10
6分钟前
wanci应助科研通管家采纳,获得10
7分钟前
8分钟前
牧无声发布了新的文献求助10
8分钟前
8分钟前
赘婿应助牧无声采纳,获得10
8分钟前
8分钟前
cxwong发布了新的文献求助10
8分钟前
kannnliannn完成签到 ,获得积分10
8分钟前
赘婿应助卓头OvQ采纳,获得10
8分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257010
求助须知:如何正确求助?哪些是违规求助? 2899010
关于积分的说明 8303286
捐赠科研通 2568267
什么是DOI,文献DOI怎么找? 1394995
科研通“疑难数据库(出版商)”最低求助积分说明 652925
邀请新用户注册赠送积分活动 630662