Computer Vision Models in Intelligent Aquaculture with Emphasis on Fish Detection and Behavior Analysis: A Review

计算机科学 水产养殖 人工智能 质量(理念) 计算机视觉 数据科学 人机交互 渔业 生物 认识论 哲学
作者
Ling Yang,Yeqi Liu,Huihui Yu,Xiaomin Fang,Lihua Song,Daoliang Li,Yingyi Chen
出处
期刊:Archives of Computational Methods in Engineering [Springer Science+Business Media]
卷期号:28 (4): 2785-2816 被引量:156
标识
DOI:10.1007/s11831-020-09486-2
摘要

Intelligence technologies play an important role in increasing product quality and production efficiency in digital aquaculture. Automatic fish detection will contribute to achieving intelligent production and scientific management in precision farming. Due to the availability and ubiquity of modern information technology, such as the internet of things, big data, and camera devices, computer vision techniques, as an essential branch of artificial intelligence, have emerged as a powerful tool for achieving automatic fish detection. At present, it has been widely used in fish species identification, counting, and behavior analysis. Nevertheless, computer vision modeling used for fish detection is riddled with many challenges, such as varies in illumination, low contrast, high noise, fish deformation, frequent occlusion, and dynamic background. Hence, this paper provides a comprehensive review of the computer vision model for fish detection under unique application scenarios. Firstly, the image acquisition system based on 2D and 3D is discussed. Further, many fish detection techniques are categorized as appearance-based, motion-based, and deep learning. In addition, applications of fish detection and public open-source datasets are also presented in the literature. Finally, the prominent findings and the directions of future research are addressed toward the advancement in the aquaculture field throughout the discussion and conclusion section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大模型应助英俊白玉采纳,获得10
2秒前
2秒前
3秒前
一定要早睡完成签到,获得积分10
3秒前
希望天下0贩的0应助Echo采纳,获得10
3秒前
3秒前
4秒前
fzy发布了新的文献求助10
5秒前
5秒前
小二郎应助小肖的KYT采纳,获得10
5秒前
红烧小布丁完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
深情安青应助阿燕采纳,获得30
5秒前
悠悠完成签到 ,获得积分10
6秒前
7秒前
开朗的板凳完成签到,获得积分10
7秒前
yufeng发布了新的文献求助10
8秒前
墨白发布了新的文献求助10
8秒前
君溪夜完成签到,获得积分10
8秒前
汉堡包应助小肖的KYT采纳,获得10
10秒前
10秒前
Lion发布了新的文献求助10
10秒前
11秒前
坚定的迎波完成签到,获得积分10
11秒前
汉堡包应助lllll07采纳,获得10
12秒前
彭于彦祖应助甄开心采纳,获得25
12秒前
优雅冬灵发布了新的文献求助10
13秒前
共享精神应助林木木采纳,获得10
14秒前
香蕉以菱发布了新的文献求助10
14秒前
田様应助yy采纳,获得10
15秒前
Owen应助龙卡烧烤店采纳,获得10
15秒前
15秒前
17秒前
SciGPT应助Susabi采纳,获得10
18秒前
jjjh完成签到 ,获得积分10
20秒前
CKK发布了新的文献求助10
20秒前
20秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842381
求助须知:如何正确求助?哪些是违规求助? 3384462
关于积分的说明 10535313
捐赠科研通 3104995
什么是DOI,文献DOI怎么找? 1709939
邀请新用户注册赠送积分活动 823416
科研通“疑难数据库(出版商)”最低求助积分说明 774059