已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Computer Vision Models in Intelligent Aquaculture with Emphasis on Fish Detection and Behavior Analysis: A Review

计算机科学 水产养殖 人工智能 质量(理念) 计算机视觉 数据科学 人机交互 渔业 生物 认识论 哲学
作者
Ling Yang,Yeqi Liu,Huihui Yu,Xiaomin Fang,Lihua Song,Daoliang Li,Yingyi Chen
出处
期刊:Archives of Computational Methods in Engineering [Springer Nature]
卷期号:28 (4): 2785-2816 被引量:156
标识
DOI:10.1007/s11831-020-09486-2
摘要

Intelligence technologies play an important role in increasing product quality and production efficiency in digital aquaculture. Automatic fish detection will contribute to achieving intelligent production and scientific management in precision farming. Due to the availability and ubiquity of modern information technology, such as the internet of things, big data, and camera devices, computer vision techniques, as an essential branch of artificial intelligence, have emerged as a powerful tool for achieving automatic fish detection. At present, it has been widely used in fish species identification, counting, and behavior analysis. Nevertheless, computer vision modeling used for fish detection is riddled with many challenges, such as varies in illumination, low contrast, high noise, fish deformation, frequent occlusion, and dynamic background. Hence, this paper provides a comprehensive review of the computer vision model for fish detection under unique application scenarios. Firstly, the image acquisition system based on 2D and 3D is discussed. Further, many fish detection techniques are categorized as appearance-based, motion-based, and deep learning. In addition, applications of fish detection and public open-source datasets are also presented in the literature. Finally, the prominent findings and the directions of future research are addressed toward the advancement in the aquaculture field throughout the discussion and conclusion section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tong完成签到,获得积分10
2秒前
繁荣的匪完成签到,获得积分10
3秒前
4秒前
夕立完成签到,获得积分10
5秒前
彩色大碗完成签到,获得积分10
5秒前
所所应助小番茄采纳,获得10
9秒前
Pixie完成签到 ,获得积分10
12秒前
Caden完成签到,获得积分10
13秒前
15秒前
16秒前
18秒前
打打应助aronlhh采纳,获得10
19秒前
玩命的孤丹完成签到,获得积分10
20秒前
20秒前
包容的千兰关注了科研通微信公众号
24秒前
lbyscu完成签到 ,获得积分10
24秒前
Gail完成签到 ,获得积分10
28秒前
29秒前
29秒前
31秒前
若眠发布了新的文献求助10
31秒前
小王完成签到,获得积分10
34秒前
35秒前
36秒前
十三完成签到 ,获得积分10
37秒前
37秒前
田様应助天才幸运鱼采纳,获得10
37秒前
萧水白发布了新的文献求助100
37秒前
40秒前
41秒前
iNk应助xingmeng采纳,获得10
41秒前
44秒前
45秒前
Siriya发布了新的文献求助30
46秒前
星hai完成签到,获得积分20
46秒前
49秒前
斯文败类应助拉长的博超采纳,获得10
49秒前
星hai发布了新的文献求助10
50秒前
iNk应助Blessing采纳,获得20
52秒前
慕青应助周周采纳,获得10
53秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959810
关于积分的说明 8597138
捐赠科研通 2638270
什么是DOI,文献DOI怎么找? 1444230
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656624