LC–QTOF-MS Presumptive Identification of Synthetic Cannabinoids without Reference Chromatographic Retention/Mass Spectral Information. I. Reversed-Phase Retention Time QSPR Prediction as an Aid to Identification of New/Unknown Compounds

甲酸 化学 色谱法 甲酸铵 乙腈 洗脱 线性回归 分子描述符 均方误差 分析化学(期刊) 数量结构-活动关系 数学 立体化学 统计
作者
Aldo Polettini,Johannes Kutzler,Christoph Sauer,Sergej Bleicher,Wolfgang Schultis
出处
期刊:Journal of Analytical Toxicology [Oxford University Press]
卷期号:45 (5): 429-439 被引量:8
标识
DOI:10.1093/jat/bkaa126
摘要

Abstract The application of Quantitative Structure–Property Relationship (QSPR) modeling to the prediction of reversed-phase liquid chromatography retention behavior of synthetic cannabinoids (SC), and its use in aiding the untargeted identification of unknown SC are described in this paper. 1D, 2D molecular descriptors and fingerprints of 105 SC were calculated with PaDEL-Descriptor, selected with Boruta algorithm in R environment, and used to build-up a multiple linear regression model able to predict retention times, relative to JWH-018 N-pentanoic acid-d5 as internal standard, under the following conditions: Agilent ZORBAX Eclipse Plus C18 (100 mm × 2.1 mm I.D., 1.8 μm) column with Phenomenex SecurityGuard Ultra cartridge (C18, 10 mm × 2.1 mm I.D., < 2 μm) kept at 50°C; gradient elution with 5-mM ammonium formate buffer (pH 4 with formic acid) and acetonitrile with 0.01% formic acid, flow rate 0.5 mL/min. The model was validated by repeated k-fold cross-validation using two-thirds of the compounds as training set and one-third as test set (Q2 0.8593; root mean squared error, 0.087, ca. 0.56 min; mean absolute error, 0.060) and by predicting relative Retention Times (rRT) of 5 SC left completely out of the modeling study. Application of the model in routine work showed its capacity to discriminate isomers, to identify unexpected SC in combination with mass spectral information, and to reduce the length of the list of candidate isomers to ca. one-third, thus reducing significantly the time required for predicting high-resolution product ion spectra to be compared to the unknown using a computational Mass Spectrometry (MS) search/identification approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
4秒前
科研小子完成签到 ,获得积分10
4秒前
5秒前
无语的沛春完成签到,获得积分10
7秒前
8秒前
jennyyu发布了新的文献求助30
8秒前
hercasewhite发布了新的文献求助10
10秒前
科目三应助wsx采纳,获得10
13秒前
14秒前
852应助77采纳,获得10
15秒前
jennyyu完成签到,获得积分10
15秒前
情怀应助琳琳采纳,获得10
16秒前
16秒前
18秒前
Mr_X发布了新的文献求助10
19秒前
WFF发布了新的文献求助10
20秒前
边港洋发布了新的文献求助10
23秒前
XF发布了新的文献求助10
23秒前
Ripal完成签到,获得积分10
26秒前
FashionBoy应助烟雨楼台采纳,获得10
26秒前
柑橘完成签到,获得积分10
27秒前
27秒前
斯文的山兰完成签到 ,获得积分10
27秒前
你说der完成签到,获得积分10
29秒前
CipherSage应助WFF采纳,获得10
30秒前
xuzekun完成签到,获得积分10
30秒前
Mr_X完成签到,获得积分10
30秒前
自然的胜发布了新的文献求助10
30秒前
科研66666完成签到 ,获得积分10
31秒前
31秒前
Ripal发布了新的文献求助10
32秒前
hiha完成签到,获得积分10
32秒前
今后应助蓁蓁采纳,获得10
34秒前
VV完成签到,获得积分10
35秒前
35秒前
Ava应助niupotr采纳,获得10
36秒前
小杨发布了新的文献求助10
36秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Synchrotron X-Ray Methods in Clay Science 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3345929
求助须知:如何正确求助?哪些是违规求助? 2972753
关于积分的说明 8656093
捐赠科研通 2653094
什么是DOI,文献DOI怎么找? 1452992
科研通“疑难数据库(出版商)”最低求助积分说明 672705
邀请新用户注册赠送积分活动 662574