高光谱成像
计算机科学
人工智能
模式识别(心理学)
探测器
灵敏度(控制系统)
滤波器(信号处理)
计算机视觉
电子工程
电信
工程类
作者
Michał Romaszewski,Przemysław Głomb,Arkadiusz Sochan,Michał Cholewa
标识
DOI:10.1016/j.forsciint.2021.110701
摘要
The sensitivity of imaging spectroscopy to haemoglobin derivatives makes it a promising tool for detecting blood. However, due to complexity and high dimensionality of hyperspectral images, the development of hyperspectral blood detection algorithms is challenging. To facilitate their development, we present a new hyperspectral blood detection dataset. This dataset, published under an open access license, consists of multiple detection scenarios with varying levels of complexity. It allows to test the performance of Machine Learning methods in relation to different acquisition environments, types of background, age of blood and presence of other blood-like substances. We have explored the dataset with blood detection experiments, for which we have used a hyperspectral target detection algorithm based on the well-known Matched Filter detector. Our results and their discussion highlight the challenges of blood detection in hyperspectral data and form a reference for further works.
科研通智能强力驱动
Strongly Powered by AbleSci AI