Estimation of the State of Charge of Lithium Batteries Based on Adaptive Unscented Kalman Filter Algorithm

卡尔曼滤波器 荷电状态 算法 残余物 协方差 噪音(视频) 计算机科学 电池(电) 控制理论(社会学) 工程类 数学 人工智能 功率(物理) 物理 图像(数学) 统计 量子力学 控制(管理)
作者
Jiechao Lv,Baochen Jiang,Xiaoli Wang,Yirong Liu,Yucheng Fu
出处
期刊:Electronics [MDPI AG]
卷期号:9 (9): 1425-1425 被引量:44
标识
DOI:10.3390/electronics9091425
摘要

The state of charge (SOC) estimation of the battery is one of the important functions of the battery management system of the electric vehicle, and the accurate SOC estimation is of great significance to the safe operation of the electric vehicle and the service life of the battery. Among the existing SOC estimation methods, the unscented Kalman filter (UKF) algorithm is widely used for SOC estimation due to its lossless transformation and high estimation accuracy. However, the traditional UKF algorithm is greatly affected by system noise and observation noise during SOC estimation. Therefore, we took the lithium cobalt oxide battery as the analysis object, and designed an adaptive unscented Kalman filter (AUKF) algorithm based on innovation and residuals to estimate SOC. Firstly, the second-order RC equivalent circuit model was established according to the physical characteristics of the battery, and the least square method was used to identify the parameters of the model and verify the model accuracy. Then, the AUKF algorithm was used for SOC estimation; the AUKF algorithm monitors the changes of innovation and residual in the filter and updates system noise covariance and observation noise covariance in real time using innovation and residual, so as to adjust the gain of the filter and realize the optimal estimation. Finally came the error comparison analysis of the estimation results of the UKF algorithm and AUKF algorithm; the results prove that the accuracy of the AUKF algorithm is 2.6% better than that of UKF algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
JamesPei应助D&L采纳,获得10
1秒前
1秒前
3秒前
香蕉觅云应助SHADY592采纳,获得10
4秒前
喜悦代双完成签到,获得积分10
4秒前
4秒前
5秒前
陆拾荒发布了新的文献求助10
5秒前
旺旺完成签到,获得积分10
6秒前
坦率灵槐应助纪汶欣采纳,获得20
6秒前
奋斗刚发布了新的文献求助10
6秒前
sincere-辉发布了新的文献求助10
7秒前
8秒前
9秒前
Owen应助lilili采纳,获得10
9秒前
9秒前
9秒前
非了个凡完成签到 ,获得积分10
10秒前
YEGE发布了新的文献求助10
10秒前
王威完成签到,获得积分10
11秒前
华仔应助不见木棉采纳,获得10
11秒前
11秒前
pp发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
今后应助卡萨丁那看啥采纳,获得10
13秒前
aben050361发布了新的文献求助10
14秒前
乐乐应助番茄鱼采纳,获得10
14秒前
大方的黄豆完成签到,获得积分10
14秒前
Lucas应助胖虎采纳,获得10
14秒前
陆拾荒完成签到,获得积分10
14秒前
D&L发布了新的文献求助10
14秒前
15秒前
15秒前
赘婿应助zhengzhao采纳,获得10
16秒前
研友_VZG7GZ应助曾经耳机采纳,获得10
18秒前
mystar发布了新的文献求助10
18秒前
我是老大应助dali采纳,获得10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648614
求助须知:如何正确求助?哪些是违规求助? 4775865
关于积分的说明 15044750
捐赠科研通 4807529
什么是DOI,文献DOI怎么找? 2570836
邀请新用户注册赠送积分活动 1527657
关于科研通互助平台的介绍 1486538