Estimation of the State of Charge of Lithium Batteries Based on Adaptive Unscented Kalman Filter Algorithm

卡尔曼滤波器 荷电状态 算法 残余物 协方差 噪音(视频) 计算机科学 电池(电) 控制理论(社会学) 工程类 数学 人工智能 功率(物理) 物理 图像(数学) 统计 量子力学 控制(管理)
作者
Jiechao Lv,Baochen Jiang,Xiaoli Wang,Yirong Liu,Yucheng Fu
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:9 (9): 1425-1425 被引量:44
标识
DOI:10.3390/electronics9091425
摘要

The state of charge (SOC) estimation of the battery is one of the important functions of the battery management system of the electric vehicle, and the accurate SOC estimation is of great significance to the safe operation of the electric vehicle and the service life of the battery. Among the existing SOC estimation methods, the unscented Kalman filter (UKF) algorithm is widely used for SOC estimation due to its lossless transformation and high estimation accuracy. However, the traditional UKF algorithm is greatly affected by system noise and observation noise during SOC estimation. Therefore, we took the lithium cobalt oxide battery as the analysis object, and designed an adaptive unscented Kalman filter (AUKF) algorithm based on innovation and residuals to estimate SOC. Firstly, the second-order RC equivalent circuit model was established according to the physical characteristics of the battery, and the least square method was used to identify the parameters of the model and verify the model accuracy. Then, the AUKF algorithm was used for SOC estimation; the AUKF algorithm monitors the changes of innovation and residual in the filter and updates system noise covariance and observation noise covariance in real time using innovation and residual, so as to adjust the gain of the filter and realize the optimal estimation. Finally came the error comparison analysis of the estimation results of the UKF algorithm and AUKF algorithm; the results prove that the accuracy of the AUKF algorithm is 2.6% better than that of UKF algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Oak完成签到 ,获得积分10
刚刚
gua完成签到,获得积分10
刚刚
bkagyin应助Jt采纳,获得10
1秒前
2秒前
Dr.Joseph发布了新的文献求助10
3秒前
哈哈哈哈发布了新的文献求助10
4秒前
5秒前
tomorrow完成签到 ,获得积分10
5秒前
一一完成签到,获得积分10
6秒前
顾矜应助mine采纳,获得10
6秒前
科目三应助田茂青采纳,获得10
8秒前
黄文霜发布了新的文献求助10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
灯火阑珊发布了新的文献求助10
8秒前
大个应助科研通管家采纳,获得10
8秒前
9秒前
大模型应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
小蘑菇应助makabaka采纳,获得10
10秒前
Ava应助嗯嗯嗯采纳,获得10
10秒前
高大的网络完成签到,获得积分10
11秒前
李健的小迷弟应助985211采纳,获得10
12秒前
13秒前
万能图书馆应助Hayat采纳,获得20
14秒前
遇见馅儿饼完成签到 ,获得积分10
17秒前
arcremnant完成签到,获得积分10
17秒前
17秒前
neckerzhu发布了新的文献求助10
18秒前
18秒前
小猪完成签到 ,获得积分10
18秒前
超级的冷松完成签到 ,获得积分10
18秒前
梁皓然发布了新的文献求助10
18秒前
昏睡的蟠桃应助黄文霜采纳,获得50
19秒前
苗玉发布了新的文献求助10
20秒前
jiayi发布了新的文献求助10
21秒前
234完成签到,获得积分10
21秒前
11发布了新的文献求助20
22秒前
苹果芭乐气泡茶完成签到 ,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958130
求助须知:如何正确求助?哪些是违规求助? 3504312
关于积分的说明 11117892
捐赠科研通 3235623
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547