Estimation of the State of Charge of Lithium Batteries Based on Adaptive Unscented Kalman Filter Algorithm

卡尔曼滤波器 荷电状态 算法 残余物 协方差 噪音(视频) 计算机科学 电池(电) 控制理论(社会学) 工程类 数学 人工智能 功率(物理) 物理 图像(数学) 统计 量子力学 控制(管理)
作者
Jiechao Lv,Baochen Jiang,Xiaoli Wang,Yirong Liu,Yucheng Fu
出处
期刊:Electronics [MDPI AG]
卷期号:9 (9): 1425-1425 被引量:44
标识
DOI:10.3390/electronics9091425
摘要

The state of charge (SOC) estimation of the battery is one of the important functions of the battery management system of the electric vehicle, and the accurate SOC estimation is of great significance to the safe operation of the electric vehicle and the service life of the battery. Among the existing SOC estimation methods, the unscented Kalman filter (UKF) algorithm is widely used for SOC estimation due to its lossless transformation and high estimation accuracy. However, the traditional UKF algorithm is greatly affected by system noise and observation noise during SOC estimation. Therefore, we took the lithium cobalt oxide battery as the analysis object, and designed an adaptive unscented Kalman filter (AUKF) algorithm based on innovation and residuals to estimate SOC. Firstly, the second-order RC equivalent circuit model was established according to the physical characteristics of the battery, and the least square method was used to identify the parameters of the model and verify the model accuracy. Then, the AUKF algorithm was used for SOC estimation; the AUKF algorithm monitors the changes of innovation and residual in the filter and updates system noise covariance and observation noise covariance in real time using innovation and residual, so as to adjust the gain of the filter and realize the optimal estimation. Finally came the error comparison analysis of the estimation results of the UKF algorithm and AUKF algorithm; the results prove that the accuracy of the AUKF algorithm is 2.6% better than that of UKF algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
晴天完成签到,获得积分10
2秒前
坦率无剑完成签到,获得积分10
2秒前
3秒前
4秒前
HuangYu关注了科研通微信公众号
5秒前
firefly完成签到 ,获得积分10
5秒前
gjx完成签到 ,获得积分10
5秒前
yangshuai发布了新的文献求助10
7秒前
晴天发布了新的文献求助10
8秒前
carbonhan完成签到,获得积分10
10秒前
无极微光应助eden采纳,获得20
12秒前
KKK完成签到,获得积分20
12秒前
ming完成签到,获得积分10
13秒前
pluto应助科研通管家采纳,获得10
15秒前
15秒前
Lny应助科研通管家采纳,获得10
15秒前
pluto应助科研通管家采纳,获得10
15秒前
15秒前
pluto应助科研通管家采纳,获得10
15秒前
Lny应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
pluto应助科研通管家采纳,获得10
15秒前
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
pluto应助科研通管家采纳,获得10
15秒前
15秒前
pluto应助科研通管家采纳,获得10
15秒前
Criminology34应助科研通管家采纳,获得10
15秒前
Criminology34应助科研通管家采纳,获得10
15秒前
pluto应助科研通管家采纳,获得10
15秒前
15秒前
Lny应助科研通管家采纳,获得10
15秒前
pluto应助科研通管家采纳,获得10
15秒前
15秒前
HOAN应助科研通管家采纳,获得30
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978