已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Estimation of the State of Charge of Lithium Batteries Based on Adaptive Unscented Kalman Filter Algorithm

卡尔曼滤波器 荷电状态 算法 残余物 协方差 噪音(视频) 计算机科学 电池(电) 控制理论(社会学) 工程类 数学 人工智能 功率(物理) 物理 图像(数学) 统计 量子力学 控制(管理)
作者
Jiechao Lv,Baochen Jiang,Xiaoli Wang,Yirong Liu,Yucheng Fu
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:9 (9): 1425-1425 被引量:44
标识
DOI:10.3390/electronics9091425
摘要

The state of charge (SOC) estimation of the battery is one of the important functions of the battery management system of the electric vehicle, and the accurate SOC estimation is of great significance to the safe operation of the electric vehicle and the service life of the battery. Among the existing SOC estimation methods, the unscented Kalman filter (UKF) algorithm is widely used for SOC estimation due to its lossless transformation and high estimation accuracy. However, the traditional UKF algorithm is greatly affected by system noise and observation noise during SOC estimation. Therefore, we took the lithium cobalt oxide battery as the analysis object, and designed an adaptive unscented Kalman filter (AUKF) algorithm based on innovation and residuals to estimate SOC. Firstly, the second-order RC equivalent circuit model was established according to the physical characteristics of the battery, and the least square method was used to identify the parameters of the model and verify the model accuracy. Then, the AUKF algorithm was used for SOC estimation; the AUKF algorithm monitors the changes of innovation and residual in the filter and updates system noise covariance and observation noise covariance in real time using innovation and residual, so as to adjust the gain of the filter and realize the optimal estimation. Finally came the error comparison analysis of the estimation results of the UKF algorithm and AUKF algorithm; the results prove that the accuracy of the AUKF algorithm is 2.6% better than that of UKF algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
muhum完成签到 ,获得积分10
刚刚
kaka完成签到,获得积分0
刚刚
1秒前
于夜柳发布了新的文献求助10
1秒前
嘻嘻哈哈应助yjx采纳,获得10
2秒前
chenwuhao完成签到 ,获得积分10
2秒前
wangxiaobin完成签到 ,获得积分10
5秒前
jiafang完成签到,获得积分10
5秒前
CipherSage应助糊糊采纳,获得30
5秒前
6秒前
uikymh完成签到 ,获得积分0
7秒前
榕小蜂完成签到 ,获得积分10
8秒前
冷酷飞飞完成签到 ,获得积分10
8秒前
jyy完成签到,获得积分10
9秒前
咩咩完成签到 ,获得积分10
9秒前
小爬沟完成签到,获得积分10
10秒前
10秒前
11秒前
Setlla完成签到 ,获得积分10
12秒前
小蘑菇应助犹豫的雁卉采纳,获得10
12秒前
肖的花园完成签到 ,获得积分10
13秒前
14秒前
15秒前
谢大喵发布了新的文献求助10
15秒前
今后应助幸运幸福采纳,获得10
16秒前
动听衬衫发布了新的文献求助10
17秒前
Nefelibata完成签到,获得积分10
18秒前
wangyue完成签到 ,获得积分10
19秒前
Angenstern完成签到 ,获得积分10
19秒前
tong童完成签到 ,获得积分10
21秒前
Fiona发布了新的文献求助10
21秒前
科研通AI5应助动听衬衫采纳,获得10
21秒前
FashionBoy应助门前海棠依旧采纳,获得10
21秒前
慕青应助动听衬衫采纳,获得10
21秒前
lizhongyu发布了新的文献求助10
23秒前
ANLAA完成签到,获得积分20
23秒前
yong完成签到 ,获得积分10
24秒前
生动的煎蛋完成签到 ,获得积分10
26秒前
Limerencia完成签到,获得积分10
26秒前
酷波er应助刘雄丽采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253082
求助须知:如何正确求助?哪些是违规求助? 4416579
关于积分的说明 13750145
捐赠科研通 4288834
什么是DOI,文献DOI怎么找? 2353101
邀请新用户注册赠送积分活动 1349865
关于科研通互助平台的介绍 1309581