Comparison of machine learning methods for citrus greening detection on UAV multispectral images

人工智能 多光谱图像 计算机科学 支持向量机 模式识别(心理学) 主成分分析 人工神经网络 稳健性(进化) 柑橘溃疡病 遥感 机器学习 地理 基因 生物 生物化学 化学 细菌 遗传学
作者
Yubin Lan,Zixiao Huang,Xiaoling Deng,Zihao Zhu,Huasheng Huang,Zheng Zheng,Bizhen Lian,Guoliang Zeng,Zejing Tong
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:171: 105234-105234 被引量:87
标识
DOI:10.1016/j.compag.2020.105234
摘要

Citrus Huanglongbing (HLB), also known as citrus greening, is the most destructive disease in the citrus industry. Detecting this disease as early as possible and eradicating the roots of HLB-infected trees can control its spread. Ground diagnosis is time-consuming and laborious. Large area monitoring method of citrus orchard with high accuracy is rare. This study evaluates the feasibility of large area detection of citrus HLB by low altitude remote sensing and commits to improve the accuracy of large-area detection. A commercial multispectral camera (ADC-lite) mounted on DJI M100 UAV(unmanned Aerial Vehicle) was used to collect green, red and near-infrared multispectral image of large area citrus orchard, a linear-stretch was performed to remove noise pixel, vegetation indices (VIs) were calculated followed by correlation analysis and feature compression using PCA (principal components analysis) and AutoEncoder to discover potential features. Several machine learning algorithms, such as support vector machine (SVM), k-nearest neighbour (kNN), logistic regression (LR), naive Bayes and ensemble learning, were compared to model the healthy and HLB-infected samples after parameter optimization. The results showed that the feature of PCA features of VIs combining with original DN (digital numbers) value generally have highest accuracy and agreement in all models, and the ensemble learning and neural network approaches had strong robustness and the best classification results (100% in AdaBoost and 97.28% in neural network) using threshold strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落晨发布了新的文献求助10
刚刚
包容可乐完成签到,获得积分10
刚刚
1秒前
眼睛大的一曲完成签到,获得积分10
1秒前
2秒前
英俊的铭应助wu采纳,获得10
2秒前
认真的飞扬完成签到,获得积分10
2秒前
2秒前
雪白的西牛完成签到,获得积分20
2秒前
芋头完成签到,获得积分10
2秒前
ntxiaohu完成签到,获得积分10
3秒前
四火完成签到,获得积分10
3秒前
3秒前
一裤子灰完成签到,获得积分10
3秒前
SamuelLiu完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
8R60d8应助松子采纳,获得10
4秒前
4秒前
我来回收数据完成签到,获得积分10
5秒前
欣忆完成签到 ,获得积分10
5秒前
复原乳完成签到,获得积分10
5秒前
6秒前
四火发布了新的文献求助10
6秒前
Rui发布了新的文献求助10
6秒前
白宝宝北北白应助dfggg采纳,获得10
7秒前
阳光海云发布了新的文献求助50
7秒前
小胖鱼关注了科研通微信公众号
7秒前
昏睡的眼神完成签到 ,获得积分10
7秒前
NexusExplorer应助南乔采纳,获得10
7秒前
杜嘟嘟发布了新的文献求助10
7秒前
完美世界应助April采纳,获得10
8秒前
提手旁辰完成签到,获得积分20
8秒前
能干的邹完成签到 ,获得积分10
8秒前
9秒前
9秒前
9秒前
酒九完成签到,获得积分10
9秒前
刺槐完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740