Comparison of machine learning methods for citrus greening detection on UAV multispectral images

人工智能 多光谱图像 计算机科学 支持向量机 模式识别(心理学) 主成分分析 人工神经网络 稳健性(进化) 柑橘溃疡病 遥感 机器学习 地理 生物化学 化学 遗传学 生物 细菌 基因
作者
Yubin Lan,Zixiao Huang,Xiaoling Deng,Zihao Zhu,Huasheng Huang,Zheng Zheng,Bizhen Lian,Guoliang Zeng,Zejing Tong
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:171: 105234-105234 被引量:87
标识
DOI:10.1016/j.compag.2020.105234
摘要

Citrus Huanglongbing (HLB), also known as citrus greening, is the most destructive disease in the citrus industry. Detecting this disease as early as possible and eradicating the roots of HLB-infected trees can control its spread. Ground diagnosis is time-consuming and laborious. Large area monitoring method of citrus orchard with high accuracy is rare. This study evaluates the feasibility of large area detection of citrus HLB by low altitude remote sensing and commits to improve the accuracy of large-area detection. A commercial multispectral camera (ADC-lite) mounted on DJI M100 UAV(unmanned Aerial Vehicle) was used to collect green, red and near-infrared multispectral image of large area citrus orchard, a linear-stretch was performed to remove noise pixel, vegetation indices (VIs) were calculated followed by correlation analysis and feature compression using PCA (principal components analysis) and AutoEncoder to discover potential features. Several machine learning algorithms, such as support vector machine (SVM), k-nearest neighbour (kNN), logistic regression (LR), naive Bayes and ensemble learning, were compared to model the healthy and HLB-infected samples after parameter optimization. The results showed that the feature of PCA features of VIs combining with original DN (digital numbers) value generally have highest accuracy and agreement in all models, and the ensemble learning and neural network approaches had strong robustness and the best classification results (100% in AdaBoost and 97.28% in neural network) using threshold strategy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
万能图书馆应助苏休夫采纳,获得10
1秒前
啊棕发布了新的文献求助10
1秒前
一页墨城完成签到,获得积分10
2秒前
3秒前
yyy完成签到 ,获得积分10
3秒前
wanci发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
科研顺利发布了新的文献求助10
4秒前
4秒前
NexusExplorer应助Henry采纳,获得10
4秒前
LEE发布了新的文献求助10
5秒前
阿杜阿杜完成签到,获得积分20
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
李火火火发布了新的文献求助10
7秒前
7秒前
小莹完成签到,获得积分10
7秒前
科研通AI6应助adminual采纳,获得10
7秒前
七七发布了新的文献求助10
7秒前
8秒前
168发布了新的文献求助10
8秒前
天天快乐应助吴吴凡采纳,获得10
8秒前
8秒前
Flo发布了新的文献求助10
8秒前
qian发布了新的文献求助10
8秒前
9秒前
科研通AI6应助仓鼠侠采纳,获得10
9秒前
清秀龙猫完成签到,获得积分10
9秒前
小马甲应助Sunflower采纳,获得10
10秒前
11秒前
LLLLL发布了新的文献求助10
12秒前
x1发布了新的文献求助10
12秒前
zuo发布了新的文献求助10
13秒前
橙汁发布了新的文献求助10
13秒前
科研通AI6应助宋宋采纳,获得10
13秒前
乐乐应助勤劳的星月采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660714
求助须知:如何正确求助?哪些是违规求助? 4835349
关于积分的说明 15091772
捐赠科研通 4819287
什么是DOI,文献DOI怎么找? 2579203
邀请新用户注册赠送积分活动 1533686
关于科研通互助平台的介绍 1492503