Comparison of machine learning methods for citrus greening detection on UAV multispectral images

人工智能 多光谱图像 计算机科学 支持向量机 模式识别(心理学) 主成分分析 人工神经网络 稳健性(进化) 柑橘溃疡病 遥感 机器学习 地理 生物化学 化学 遗传学 生物 细菌 基因
作者
Yubin Lan,Zixiao Huang,Xiaoling Deng,Zihao Zhu,Huasheng Huang,Zheng Zheng,Bizhen Lian,Guoliang Zeng,Zejing Tong
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:171: 105234-105234 被引量:87
标识
DOI:10.1016/j.compag.2020.105234
摘要

Citrus Huanglongbing (HLB), also known as citrus greening, is the most destructive disease in the citrus industry. Detecting this disease as early as possible and eradicating the roots of HLB-infected trees can control its spread. Ground diagnosis is time-consuming and laborious. Large area monitoring method of citrus orchard with high accuracy is rare. This study evaluates the feasibility of large area detection of citrus HLB by low altitude remote sensing and commits to improve the accuracy of large-area detection. A commercial multispectral camera (ADC-lite) mounted on DJI M100 UAV(unmanned Aerial Vehicle) was used to collect green, red and near-infrared multispectral image of large area citrus orchard, a linear-stretch was performed to remove noise pixel, vegetation indices (VIs) were calculated followed by correlation analysis and feature compression using PCA (principal components analysis) and AutoEncoder to discover potential features. Several machine learning algorithms, such as support vector machine (SVM), k-nearest neighbour (kNN), logistic regression (LR), naive Bayes and ensemble learning, were compared to model the healthy and HLB-infected samples after parameter optimization. The results showed that the feature of PCA features of VIs combining with original DN (digital numbers) value generally have highest accuracy and agreement in all models, and the ensemble learning and neural network approaches had strong robustness and the best classification results (100% in AdaBoost and 97.28% in neural network) using threshold strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏苏完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
斯文败类应助和谐绍辉采纳,获得10
5秒前
科研通AI2S应助tttt采纳,获得10
5秒前
6秒前
SKDCROOS发布了新的文献求助10
6秒前
cherlie应助粉条采纳,获得10
6秒前
kkkim完成签到 ,获得积分10
6秒前
7秒前
7秒前
糟糕的学姐完成签到 ,获得积分10
9秒前
9秒前
9秒前
SciGPT应助寂寞的书竹采纳,获得10
10秒前
tingting发布了新的文献求助10
10秒前
搜集达人应助ptalala采纳,获得10
12秒前
心灵美的修杰完成签到,获得积分10
12秒前
12秒前
希望天下0贩的0应助小宋采纳,获得10
13秒前
顾矜应助义气萝卜头采纳,获得10
15秒前
小果叮完成签到,获得积分10
16秒前
SHEN发布了新的文献求助10
16秒前
17秒前
生动的战斗机完成签到,获得积分10
20秒前
榕树完成签到,获得积分10
20秒前
天荷完成签到,获得积分10
21秒前
NexusExplorer应助路会飞采纳,获得10
22秒前
22秒前
wuhu完成签到 ,获得积分10
22秒前
liujun发布了新的文献求助20
23秒前
ZzzZzH发布了新的文献求助10
25秒前
蒋瑞轩发布了新的文献求助10
26秒前
段启瑞完成签到,获得积分10
26秒前
充电宝应助小果叮采纳,获得10
27秒前
SHEN完成签到,获得积分10
27秒前
英姑应助为神指路采纳,获得10
29秒前
休休完成签到,获得积分10
31秒前
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976210
求助须知:如何正确求助?哪些是违规求助? 3520366
关于积分的说明 11203088
捐赠科研通 3256965
什么是DOI,文献DOI怎么找? 1798570
邀请新用户注册赠送积分活动 877738
科研通“疑难数据库(出版商)”最低求助积分说明 806516