Comparison of machine learning methods for citrus greening detection on UAV multispectral images

人工智能 多光谱图像 计算机科学 支持向量机 模式识别(心理学) 主成分分析 人工神经网络 稳健性(进化) 柑橘溃疡病 遥感 机器学习 地理 生物化学 化学 遗传学 生物 细菌 基因
作者
Yubin Lan,Zixiao Huang,Xiaoling Deng,Zihao Zhu,Huasheng Huang,Zheng Zheng,Bizhen Lian,Guoliang Zeng,Zejing Tong
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:171: 105234-105234 被引量:87
标识
DOI:10.1016/j.compag.2020.105234
摘要

Citrus Huanglongbing (HLB), also known as citrus greening, is the most destructive disease in the citrus industry. Detecting this disease as early as possible and eradicating the roots of HLB-infected trees can control its spread. Ground diagnosis is time-consuming and laborious. Large area monitoring method of citrus orchard with high accuracy is rare. This study evaluates the feasibility of large area detection of citrus HLB by low altitude remote sensing and commits to improve the accuracy of large-area detection. A commercial multispectral camera (ADC-lite) mounted on DJI M100 UAV(unmanned Aerial Vehicle) was used to collect green, red and near-infrared multispectral image of large area citrus orchard, a linear-stretch was performed to remove noise pixel, vegetation indices (VIs) were calculated followed by correlation analysis and feature compression using PCA (principal components analysis) and AutoEncoder to discover potential features. Several machine learning algorithms, such as support vector machine (SVM), k-nearest neighbour (kNN), logistic regression (LR), naive Bayes and ensemble learning, were compared to model the healthy and HLB-infected samples after parameter optimization. The results showed that the feature of PCA features of VIs combining with original DN (digital numbers) value generally have highest accuracy and agreement in all models, and the ensemble learning and neural network approaches had strong robustness and the best classification results (100% in AdaBoost and 97.28% in neural network) using threshold strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xltox完成签到,获得积分10
刚刚
XylonYu完成签到,获得积分10
1秒前
华仔应助碧蓝碧凡采纳,获得10
2秒前
3秒前
超勍发布了新的文献求助10
7秒前
小马甲应助yuanshl1985采纳,获得10
7秒前
zhuxiaonian完成签到,获得积分10
10秒前
田様应助淘气科研采纳,获得10
10秒前
chenyi完成签到,获得积分10
11秒前
zyyyy完成签到,获得积分10
11秒前
奶黄包完成签到 ,获得积分10
11秒前
SYLH应助海阔天空采纳,获得10
11秒前
11秒前
机灵又蓝完成签到,获得积分10
12秒前
张土豆完成签到 ,获得积分10
12秒前
善学以致用应助小王采纳,获得10
12秒前
orang完成签到,获得积分10
13秒前
巧巧艾完成签到,获得积分10
13秒前
14秒前
邵洋完成签到,获得积分10
14秒前
sl发布了新的文献求助10
14秒前
15秒前
小迪迦奥特曼完成签到,获得积分10
15秒前
15秒前
cckk发布了新的文献求助10
16秒前
夏目由美完成签到 ,获得积分10
16秒前
Jasper应助哦哦哦采纳,获得10
17秒前
YYD完成签到,获得积分10
17秒前
超勍完成签到,获得积分10
17秒前
碧蓝碧凡发布了新的文献求助10
18秒前
Popeye应助鹤鸣采纳,获得30
18秒前
YYD发布了新的文献求助10
19秒前
yuanshl1985发布了新的文献求助10
19秒前
积极的黑猫完成签到,获得积分10
20秒前
GB完成签到 ,获得积分10
20秒前
Metx完成签到 ,获得积分10
21秒前
孤独的涔完成签到,获得积分10
22秒前
Jay完成签到,获得积分10
22秒前
23秒前
深情安青应助hf采纳,获得10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029