Predicting Survival After Hepatocellular Carcinoma Resection Using Deep Learning on Histological Slides

肝细胞癌 医学 人工智能 生存分析 卷积神经网络 肿瘤科 深度学习 内科学 机器学习 放射科 比例危险模型 计算机科学
作者
Charlie Saillard,Benoît Schmauch,Oumeima Laifa,Matahi Moarii,Sylvain Toldo,Mikhail Zaslavskiy,Elodie Pronier,Alexis Laurent,Giuliana Amaddeo,Hélène Regnault,Danièle Sommacale,Marianne Ziol,Jean‐Michel Pawlotsky,Sébastien Mulé,Alain Luciani,Gilles Wainrib,Thomas Clozel,Pierre Courtiol,Julien Caldéraro
出处
期刊:Hepatology [Wiley]
卷期号:72 (6): 2000-2013 被引量:216
标识
DOI:10.1002/hep.31207
摘要

Standardized and robust risk-stratification systems for patients with hepatocellular carcinoma (HCC) are required to improve therapeutic strategies and investigate the benefits of adjuvant systemic therapies after curative resection/ablation.In this study, we used two deep-learning algorithms based on whole-slide digitized histological slides (whole-slide imaging; WSI) to build models for predicting survival of patients with HCC treated by surgical resection. Two independent series were investigated: a discovery set (Henri Mondor Hospital, n = 194) used to develop our algorithms and an independent validation set (The Cancer Genome Atlas [TCGA], n = 328). WSIs were first divided into small squares ("tiles"), and features were extracted with a pretrained convolutional neural network (preprocessing step). The first deep-learning-based algorithm ("SCHMOWDER") uses an attention mechanism on tumoral areas annotated by a pathologist whereas the second ("CHOWDER") does not require human expertise. In the discovery set, c-indices for survival prediction of SCHMOWDER and CHOWDER reached 0.78 and 0.75, respectively. Both models outperformed a composite score incorporating all baseline variables associated with survival. Prognostic value of the models was further validated in the TCGA data set, and, as observed in the discovery series, both models had a higher discriminatory power than a score combining all baseline variables associated with survival. Pathological review showed that the tumoral areas most predictive of poor survival were characterized by vascular spaces, the macrotrabecular architectural pattern, and a lack of immune infiltration.This study shows that artificial intelligence can help refine the prediction of HCC prognosis. It highlights the importance of pathologist/machine interactions for the construction of deep-learning algorithms that benefit from expert knowledge and allow a biological understanding of their output.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
牙鸟完成签到,获得积分10
1秒前
李爱国应助站住浩子采纳,获得10
1秒前
2秒前
1234发布了新的文献求助10
3秒前
6秒前
7秒前
小溪溪发布了新的文献求助10
8秒前
不安青牛应助Cookie采纳,获得10
9秒前
杋困了完成签到 ,获得积分10
9秒前
satchzhao完成签到,获得积分10
10秒前
10秒前
yi111完成签到,获得积分10
11秒前
小蘑菇应助jiemy采纳,获得10
12秒前
脆皮的鼠完成签到 ,获得积分10
13秒前
13秒前
momo发布了新的文献求助10
14秒前
1234完成签到,获得积分10
14秒前
善始善终发布了新的文献求助10
15秒前
naturehome发布了新的文献求助10
16秒前
18秒前
橙子完成签到,获得积分10
18秒前
adam完成签到,获得积分10
18秒前
19秒前
19秒前
少少少发布了新的文献求助30
19秒前
YKH完成签到,获得积分10
19秒前
niulugai应助科研通管家采纳,获得10
19秒前
顾矜应助科研通管家采纳,获得10
19秒前
Owen应助科研通管家采纳,获得10
19秒前
20秒前
22秒前
23秒前
23秒前
25秒前
明帅完成签到,获得积分10
25秒前
小知了完成签到,获得积分10
26秒前
26秒前
27秒前
打打应助momo采纳,获得30
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441549
求助须知:如何正确求助?哪些是违规求助? 3038186
关于积分的说明 8970883
捐赠科研通 2726453
什么是DOI,文献DOI怎么找? 1495472
科研通“疑难数据库(出版商)”最低求助积分说明 691208
邀请新用户注册赠送积分活动 688239