Pre‐ and post‐earthquake regional loss assessment using deep learning

脆弱性(计算) 计算机科学 地震灾害 地震风险 概率逻辑 人工神经网络 脆弱性评估 深度学习 危害 脆弱性 地震情景 地震学 机器学习 地质学 人工智能 心理学 化学 计算机安全 有机化学 物理化学 心理治疗师 心理弹性
作者
Taeyong Kim,Junho Song,Oh‐Sung Kwon
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
卷期号:49 (7): 657-678 被引量:55
标识
DOI:10.1002/eqe.3258
摘要

Summary As urban systems become more highly sophisticated and interdependent, their vulnerability to earthquake events exhibits a significant level of uncertainties. Thus, community‐level seismic risk assessments are indispensable to facilitate decision making for effective hazard mitigation and disaster responses. To this end, new frameworks for pre‐ and post‐earthquake regional loss assessments are proposed using deep learning methods. First, to improve the accuracy of the response prediction of individual structures during the pre‐earthquake loss assessment, a widely used nonlinear static procedure is replaced by the recently developed probabilistic deep neural network model. The variabilities of the nonlinear responses of a structural system given the seismic intensity can be quantified during the loss assessment process. Second, to facilitate near‐real‐time post‐earthquake loss assessments, an adaptive algorithm, which identifies the optimal number and locations of sensors in a given urban area, is proposed. Using a deep neural network that estimates area‐wide structural damage given the spatial distribution of the seismic intensity levels as a surrogate model, the algorithm adaptively places additional sensors at property lots at which errors from surrogate estimations of the structural damage are the greatest. Note that the surrogate model is constructed before earthquake events using simulated datasets. To test and demonstrate the proposed frameworks, the paper introduces thorough numerical investigations of two hypothetical urban communities. The proposed frameworks using the deep learning methods are expected to make critical advances in pre‐ and post‐earthquake regional loss assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
wuuToiiin完成签到,获得积分10
2秒前
hai发布了新的文献求助10
3秒前
3秒前
纯简完成签到,获得积分10
4秒前
岁月流年完成签到,获得积分10
6秒前
GA发布了新的文献求助10
6秒前
hi应助U9A采纳,获得10
6秒前
丹丹发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
9秒前
10秒前
LORI完成签到,获得积分10
10秒前
11秒前
一只羊发布了新的文献求助10
11秒前
Luo完成签到,获得积分10
12秒前
耶耶耶完成签到,获得积分10
12秒前
UMA发布了新的文献求助10
13秒前
hai完成签到,获得积分10
13秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
14秒前
bkagyin应助科研通管家采纳,获得30
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
yznfly应助科研通管家采纳,获得30
14秒前
无花果应助科研通管家采纳,获得10
15秒前
寸光发布了新的文献求助30
15秒前
Lucas应助科研通管家采纳,获得10
15秒前
MXene应助科研通管家采纳,获得20
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
CC柚关注了科研通微信公众号
15秒前
15秒前
JJ完成签到 ,获得积分10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967482
求助须知:如何正确求助?哪些是违规求助? 3512759
关于积分的说明 11164944
捐赠科研通 3247740
什么是DOI,文献DOI怎么找? 1794021
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517