Pre‐ and post‐earthquake regional loss assessment using deep learning

脆弱性(计算) 计算机科学 地震灾害 地震风险 概率逻辑 人工神经网络 脆弱性评估 深度学习 危害 脆弱性 地震情景 地震模拟 地震学 机器学习 地质学 人工智能 心理学 化学 心理治疗师 有机化学 物理化学 心理弹性 计算机安全
作者
Taeyong Kim,Junho Song,Oh‐Sung Kwon
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
卷期号:49 (7): 657-678 被引量:52
标识
DOI:10.1002/eqe.3258
摘要

Summary As urban systems become more highly sophisticated and interdependent, their vulnerability to earthquake events exhibits a significant level of uncertainties. Thus, community‐level seismic risk assessments are indispensable to facilitate decision making for effective hazard mitigation and disaster responses. To this end, new frameworks for pre‐ and post‐earthquake regional loss assessments are proposed using deep learning methods. First, to improve the accuracy of the response prediction of individual structures during the pre‐earthquake loss assessment, a widely used nonlinear static procedure is replaced by the recently developed probabilistic deep neural network model. The variabilities of the nonlinear responses of a structural system given the seismic intensity can be quantified during the loss assessment process. Second, to facilitate near‐real‐time post‐earthquake loss assessments, an adaptive algorithm, which identifies the optimal number and locations of sensors in a given urban area, is proposed. Using a deep neural network that estimates area‐wide structural damage given the spatial distribution of the seismic intensity levels as a surrogate model, the algorithm adaptively places additional sensors at property lots at which errors from surrogate estimations of the structural damage are the greatest. Note that the surrogate model is constructed before earthquake events using simulated datasets. To test and demonstrate the proposed frameworks, the paper introduces thorough numerical investigations of two hypothetical urban communities. The proposed frameworks using the deep learning methods are expected to make critical advances in pre‐ and post‐earthquake regional loss assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
言午完成签到,获得积分10
刚刚
欣欣完成签到,获得积分20
刚刚
彳亍完成签到,获得积分10
1秒前
壹零零柒完成签到 ,获得积分10
2秒前
zz关闭了zz文献求助
3秒前
3秒前
奶油猫猫发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
苻尔曼完成签到,获得积分20
4秒前
zoe完成签到 ,获得积分10
4秒前
BF关闭了BF文献求助
4秒前
与一完成签到 ,获得积分10
4秒前
包凡之完成签到,获得积分10
5秒前
6秒前
6秒前
欣欣发布了新的文献求助10
6秒前
flyman发布了新的文献求助10
6秒前
6秒前
一sh发布了新的文献求助10
6秒前
Owen应助小鱼鱼Fish采纳,获得10
7秒前
lukelinn完成签到 ,获得积分10
8秒前
panhaihui完成签到,获得积分20
8秒前
无辜沛萍给无辜沛萍的求助进行了留言
10秒前
天天快乐应助qq采纳,获得10
10秒前
bkagyin应助yy采纳,获得10
11秒前
明理的晓绿完成签到,获得积分10
11秒前
tuzhihong发布了新的文献求助10
11秒前
Mark_He发布了新的文献求助10
12秒前
pptt应助lsq采纳,获得10
12秒前
打打应助皮卡采纳,获得10
12秒前
王伟军完成签到 ,获得积分10
12秒前
Ariel发布了新的文献求助20
12秒前
和平使命应助研友_p采纳,获得10
13秒前
addestay发布了新的文献求助10
13秒前
连冷安发布了新的文献求助10
13秒前
欧维完成签到,获得积分10
13秒前
13秒前
Lucas应助江xiaoyu小鱼采纳,获得10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311845
求助须知:如何正确求助?哪些是违规求助? 2944668
关于积分的说明 8520492
捐赠科研通 2620270
什么是DOI,文献DOI怎么找? 1432725
科研通“疑难数据库(出版商)”最低求助积分说明 664756
邀请新用户注册赠送积分活动 650053