Pre‐ and post‐earthquake regional loss assessment using deep learning

脆弱性(计算) 计算机科学 地震灾害 地震风险 概率逻辑 人工神经网络 脆弱性评估 深度学习 危害 脆弱性 地震情景 地震学 机器学习 地质学 人工智能 心理学 化学 计算机安全 有机化学 物理化学 心理治疗师 心理弹性
作者
Taeyong Kim,Junho Song,Oh‐Sung Kwon
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
卷期号:49 (7): 657-678 被引量:66
标识
DOI:10.1002/eqe.3258
摘要

Summary As urban systems become more highly sophisticated and interdependent, their vulnerability to earthquake events exhibits a significant level of uncertainties. Thus, community‐level seismic risk assessments are indispensable to facilitate decision making for effective hazard mitigation and disaster responses. To this end, new frameworks for pre‐ and post‐earthquake regional loss assessments are proposed using deep learning methods. First, to improve the accuracy of the response prediction of individual structures during the pre‐earthquake loss assessment, a widely used nonlinear static procedure is replaced by the recently developed probabilistic deep neural network model. The variabilities of the nonlinear responses of a structural system given the seismic intensity can be quantified during the loss assessment process. Second, to facilitate near‐real‐time post‐earthquake loss assessments, an adaptive algorithm, which identifies the optimal number and locations of sensors in a given urban area, is proposed. Using a deep neural network that estimates area‐wide structural damage given the spatial distribution of the seismic intensity levels as a surrogate model, the algorithm adaptively places additional sensors at property lots at which errors from surrogate estimations of the structural damage are the greatest. Note that the surrogate model is constructed before earthquake events using simulated datasets. To test and demonstrate the proposed frameworks, the paper introduces thorough numerical investigations of two hypothetical urban communities. The proposed frameworks using the deep learning methods are expected to make critical advances in pre‐ and post‐earthquake regional loss assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助CHBW采纳,获得10
1秒前
berrycute发布了新的文献求助10
1秒前
陈静完成签到,获得积分10
2秒前
AAAADiao发布了新的文献求助10
3秒前
4秒前
闪闪觅松发布了新的文献求助10
5秒前
可爱的函函应助Jupiter 1234采纳,获得10
5秒前
yofaz完成签到,获得积分10
5秒前
6秒前
Lucas选李华完成签到 ,获得积分10
6秒前
7秒前
luoluo完成签到 ,获得积分10
8秒前
小酒窝发布了新的文献求助10
8秒前
Criminology34应助vivian采纳,获得10
9秒前
所所应助vivian采纳,获得10
9秒前
ding应助berrycute采纳,获得10
10秒前
科研通AI6应助zxg采纳,获得10
11秒前
calm发布了新的文献求助10
11秒前
11秒前
pluto应助哈哈采纳,获得10
11秒前
12秒前
12秒前
呆呆发布了新的文献求助10
13秒前
Kuroneko完成签到,获得积分20
13秒前
开心的饼干完成签到,获得积分10
14秒前
细心擎呢完成签到 ,获得积分10
14秒前
酷波er应助QQ采纳,获得10
14秒前
李乐发布了新的文献求助10
15秒前
merlin完成签到,获得积分10
16秒前
夜琉璃应助张先生采纳,获得10
17秒前
seven765发布了新的文献求助10
17秒前
kyf关闭了kyf文献求助
17秒前
echo完成签到 ,获得积分10
18秒前
李文广完成签到,获得积分10
18秒前
科研通AI6应助calm采纳,获得10
18秒前
qah发布了新的文献求助10
18秒前
19秒前
立青发布了新的文献求助10
19秒前
爱尔兰的狼完成签到,获得积分10
21秒前
香蕉觅云应助秋日思语采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565327
求助须知:如何正确求助?哪些是违规求助? 4650317
关于积分的说明 14690672
捐赠科研通 4592233
什么是DOI,文献DOI怎么找? 2519494
邀请新用户注册赠送积分活动 1491964
关于科研通互助平台的介绍 1463183