CNN-Based Super-Resolution of Hyperspectral Images

高光谱成像 反褶积 计算机科学 端元 图像分辨率 卷积神经网络 模式识别(心理学) 人工智能 卷积(计算机科学) 迭代重建 算法 人工神经网络
作者
P. V. Arun,Krishna Mohan Buddhiraju,Alok Porwal,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (9): 6106-6121 被引量:72
标识
DOI:10.1109/tgrs.2020.2973370
摘要

Single-image super-resolution (SISR) techniques attempt to reconstruct the finer resolution version of a given image from its coarser version. In the SISR of hyperspectral data sets, the simultaneous consideration of spectral bands is crucial for ensuring the spectral fidelity. However, the high spectral resolution of these data sets affects the performance of conventional approaches. This research proposes the design of 3-D convolutional neural network (CNN)-based SISR architectures that can map the spatial-spectral characteristics of hypercubes to a finer spatial resolution. The proposed approaches facilitate the simultaneous optimization of sparse codes and dictionaries with regard to the super-resolution objective. Our main hypothesis is that the consideration of spectral aspects is essential for the spatial enhancement of hyperspectral images. Also, we propose that the regularized deconvolution of a coarser-scale hypercube, using learned 3-D filters, yields the required high-resolution version. Based on these hypotheses, a convolution-deconvolution framework is proposed to super-resolve the hypercubes in parallel with the reconstruction of a set of regularizing features. Novel sparse code optimization sub-networks proposed in this article give better performance than the existing strategies. The endmember similarities and hyperspectral image prior are considered while designing the proposed loss functions. In order to improve the generalizability, a collaborative spectral unmixing strategy is employed to refine the spectral base of the super-resolved result. The spatial-spectral accuracy of the super-resolved hypercubes, in terms of the validity of regularizing features and endmembers, is explored to devise an optimal ensemble strategy. The experiments, over different data sets, confirm better accuracy of the proposed frameworks compared to the prominent approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YYY发布了新的文献求助10
1秒前
Dr发布了新的文献求助10
2秒前
2秒前
热心傲珊发布了新的文献求助10
3秒前
ywyw完成签到 ,获得积分10
6秒前
我是老大应助mse采纳,获得10
6秒前
方远锋发布了新的文献求助10
7秒前
共享精神应助Dr采纳,获得10
7秒前
搞点学术完成签到 ,获得积分10
7秒前
思源应助夏雨微凉采纳,获得10
8秒前
8秒前
10秒前
10秒前
YYY发布了新的文献求助10
10秒前
11秒前
12秒前
ner完成签到,获得积分20
12秒前
雨泽发布了新的文献求助10
14秒前
iris完成签到 ,获得积分10
14秒前
123456发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
HandsomeBoy完成签到 ,获得积分10
16秒前
SciGPT应助跳跳狗采纳,获得10
17秒前
方远锋完成签到,获得积分10
17秒前
FashionBoy应助rui采纳,获得10
17秒前
呆萌蜻蜓完成签到,获得积分10
18秒前
Limerence完成签到 ,获得积分10
19秒前
czj发布了新的文献求助10
19秒前
20秒前
20秒前
合适耳机发布了新的文献求助10
20秒前
23秒前
24秒前
24秒前
24秒前
cjfc发布了新的文献求助10
25秒前
25秒前
Yuantian发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602648
求助须知:如何正确求助?哪些是违规求助? 4687718
关于积分的说明 14850857
捐赠科研通 4684814
什么是DOI,文献DOI怎么找? 2539992
邀请新用户注册赠送积分活动 1506766
关于科研通互助平台的介绍 1471445