已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CNN-Based Super-Resolution of Hyperspectral Images

高光谱成像 反褶积 计算机科学 端元 图像分辨率 卷积神经网络 模式识别(心理学) 人工智能 卷积(计算机科学) 迭代重建 算法 人工神经网络
作者
P. V. Arun,Krishna Mohan Buddhiraju,Alok Porwal,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (9): 6106-6121 被引量:72
标识
DOI:10.1109/tgrs.2020.2973370
摘要

Single-image super-resolution (SISR) techniques attempt to reconstruct the finer resolution version of a given image from its coarser version. In the SISR of hyperspectral data sets, the simultaneous consideration of spectral bands is crucial for ensuring the spectral fidelity. However, the high spectral resolution of these data sets affects the performance of conventional approaches. This research proposes the design of 3-D convolutional neural network (CNN)-based SISR architectures that can map the spatial-spectral characteristics of hypercubes to a finer spatial resolution. The proposed approaches facilitate the simultaneous optimization of sparse codes and dictionaries with regard to the super-resolution objective. Our main hypothesis is that the consideration of spectral aspects is essential for the spatial enhancement of hyperspectral images. Also, we propose that the regularized deconvolution of a coarser-scale hypercube, using learned 3-D filters, yields the required high-resolution version. Based on these hypotheses, a convolution-deconvolution framework is proposed to super-resolve the hypercubes in parallel with the reconstruction of a set of regularizing features. Novel sparse code optimization sub-networks proposed in this article give better performance than the existing strategies. The endmember similarities and hyperspectral image prior are considered while designing the proposed loss functions. In order to improve the generalizability, a collaborative spectral unmixing strategy is employed to refine the spectral base of the super-resolved result. The spatial-spectral accuracy of the super-resolved hypercubes, in terms of the validity of regularizing features and endmembers, is explored to devise an optimal ensemble strategy. The experiments, over different data sets, confirm better accuracy of the proposed frameworks compared to the prominent approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhb1998发布了新的文献求助10
1秒前
木小叶发布了新的文献求助10
2秒前
贝妮戴塔发布了新的文献求助20
3秒前
LLL发布了新的文献求助10
3秒前
star应助小么小采纳,获得10
3秒前
丘比特应助夏依瑶采纳,获得30
4秒前
乙酰水杨酸完成签到,获得积分10
5秒前
TIPHA发布了新的文献求助10
7秒前
8秒前
11秒前
蒋蒋蒋蒋发布了新的文献求助10
11秒前
幸福的含灵完成签到,获得积分10
11秒前
13秒前
深情安青应助陈益凡采纳,获得10
13秒前
13秒前
linda完成签到,获得积分10
13秒前
桐桐应助完美外绣采纳,获得10
14秒前
14秒前
充电宝应助TIPHA采纳,获得10
14秒前
大个应助XIAO QIANG采纳,获得30
14秒前
16秒前
17秒前
万能图书馆应助烟消云散采纳,获得10
18秒前
linda发布了新的文献求助10
18秒前
青年才俊发布了新的文献求助10
19秒前
爆米花应助麦芽采纳,获得10
19秒前
21秒前
22秒前
jasonjiang完成签到 ,获得积分0
23秒前
24秒前
25秒前
Q哈哈哈发布了新的文献求助10
26秒前
酷波er应助linda采纳,获得30
26秒前
27秒前
WXM发布了新的文献求助10
27秒前
xcc完成签到 ,获得积分10
27秒前
Xieyijing应助Alex采纳,获得10
28秒前
29秒前
热心一江发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5090007
求助须知:如何正确求助?哪些是违规求助? 4304665
关于积分的说明 13414601
捐赠科研通 4130315
什么是DOI,文献DOI怎么找? 2262199
邀请新用户注册赠送积分活动 1266136
关于科研通互助平台的介绍 1200822