Application of deep learning to the diagnosis of cervical lymph node metastasis from thyroid cancer with CT: external validation and clinical utility for resident training

医学 神经组阅片室 放射科 淋巴结转移 甲状腺癌 淋巴结 介入放射学 超声波 宫颈癌 医学物理学 癌症 转移 病理 内科学 神经学 精神科
作者
Jeong Hoon Lee,Eun Ju Ha,Dayoung Kim,Yong Jun Jung,Subin Heo,Yong-ho Jang,Sung Hyun An,Kyungmin Lee
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:30 (6): 3066-3072 被引量:77
标识
DOI:10.1007/s00330-019-06652-4
摘要

This study aimed to validate a deep learning model’s diagnostic performance in using computed tomography (CT) to diagnose cervical lymph node metastasis (LNM) from thyroid cancer in a large clinical cohort and to evaluate the model’s clinical utility for resident training. The performance of eight deep learning models was validated using 3838 axial CT images from 698 consecutive patients with thyroid cancer who underwent preoperative CT imaging between January and August 2018 (3606 and 232 images from benign and malignant lymph nodes, respectively). Six trainees viewed the same patient images (n = 242), and their diagnostic performance and confidence level (5-point scale) were assessed before and after computer-aided diagnosis (CAD) was included. The overall area under the receiver operating characteristics (AUROC) of the eight deep learning algorithms was 0.846 (range 0.784–0.884). The best performing model was Xception, with an AUROC of 0.884. The diagnostic accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of Xception were 82.8%, 80.2%, 83.0%, 83.0%, and 80.2%, respectively. After introducing the CAD system, underperforming trainees received more help from artificial intelligence than the higher performing trainees (p = 0.046), and overall confidence levels significantly increased from 3.90 to 4.30 (p < 0.001). The deep learning–based CAD system used in this study for CT diagnosis of cervical LNM from thyroid cancer was clinically validated with an AUROC of 0.884. This approach may serve as a training tool to help resident physicians to gain confidence in diagnosis. • A deep learning-based CAD system for CT diagnosis of cervical LNM from thyroid cancer was validated using data from a clinical cohort. The AUROC for the eight tested algorithms ranged from 0.784 to 0.884. • Of the eight models, the Xception algorithm was the best performing model for the external validation dataset with 0.884 AUROC. The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value were 82.8%, 80.2%, 83.0%, 83.0%, and 80.2%, respectively. • The CAD system exhibited potential to improve diagnostic specificity and accuracy in underperforming trainees (3 of 6 trainees, 50.0%). This approach may have clinical utility as a training tool to help trainees to gain confidence in diagnoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星辰大海应助陈阳采纳,获得10
刚刚
玉玉鼠发布了新的文献求助10
刚刚
1秒前
大可发布了新的文献求助30
1秒前
闪闪乌龟发布了新的文献求助10
1秒前
1秒前
wen发布了新的文献求助10
1秒前
语物完成签到,获得积分10
1秒前
2秒前
jiejie发布了新的文献求助10
2秒前
我是老大应助HEIHEI采纳,获得10
3秒前
深情安青应助五小采纳,获得10
3秒前
3秒前
芽芽乐完成签到,获得积分10
4秒前
蜡笔小新发布了新的文献求助10
4秒前
4秒前
5秒前
思维隋完成签到 ,获得积分10
5秒前
Lucas应助科研小白菜采纳,获得10
5秒前
5秒前
朴实绝悟完成签到,获得积分10
6秒前
搜集达人应助zhuangyuan采纳,获得10
6秒前
华国锋完成签到,获得积分10
6秒前
6秒前
常常完成签到 ,获得积分10
6秒前
wwwww123完成签到,获得积分10
6秒前
6秒前
长医德莱文完成签到,获得积分10
6秒前
7秒前
xiaorang完成签到,获得积分10
7秒前
7秒前
HH完成签到,获得积分10
8秒前
gej完成签到,获得积分10
8秒前
吴彦祖完成签到,获得积分10
8秒前
8秒前
July应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016558
求助须知:如何正确求助?哪些是违规求助? 3556732
关于积分的说明 11322479
捐赠科研通 3289455
什么是DOI,文献DOI怎么找? 1812490
邀请新用户注册赠送积分活动 888053
科研通“疑难数据库(出版商)”最低求助积分说明 812074