Application of deep learning to the diagnosis of cervical lymph node metastasis from thyroid cancer with CT: external validation and clinical utility for resident training

医学 神经组阅片室 放射科 接收机工作特性 甲状腺癌 置信区间 淋巴结 介入放射学 颈淋巴结 宫颈癌 癌症 转移 内科学 神经学 精神科
作者
Jeong Hoon Lee,Eun Ju Ha,Dayoung Kim,Yong Jun Jung,Subin Heo,Yong-ho Jang,Sung Hyun An,Kyung‐Min Lee
出处
期刊:European Radiology [Springer Nature]
卷期号:30 (6): 3066-3072 被引量:59
标识
DOI:10.1007/s00330-019-06652-4
摘要

This study aimed to validate a deep learning model’s diagnostic performance in using computed tomography (CT) to diagnose cervical lymph node metastasis (LNM) from thyroid cancer in a large clinical cohort and to evaluate the model’s clinical utility for resident training. The performance of eight deep learning models was validated using 3838 axial CT images from 698 consecutive patients with thyroid cancer who underwent preoperative CT imaging between January and August 2018 (3606 and 232 images from benign and malignant lymph nodes, respectively). Six trainees viewed the same patient images (n = 242), and their diagnostic performance and confidence level (5-point scale) were assessed before and after computer-aided diagnosis (CAD) was included. The overall area under the receiver operating characteristics (AUROC) of the eight deep learning algorithms was 0.846 (range 0.784–0.884). The best performing model was Xception, with an AUROC of 0.884. The diagnostic accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of Xception were 82.8%, 80.2%, 83.0%, 83.0%, and 80.2%, respectively. After introducing the CAD system, underperforming trainees received more help from artificial intelligence than the higher performing trainees (p = 0.046), and overall confidence levels significantly increased from 3.90 to 4.30 (p < 0.001). The deep learning–based CAD system used in this study for CT diagnosis of cervical LNM from thyroid cancer was clinically validated with an AUROC of 0.884. This approach may serve as a training tool to help resident physicians to gain confidence in diagnosis. • A deep learning-based CAD system for CT diagnosis of cervical LNM from thyroid cancer was validated using data from a clinical cohort. The AUROC for the eight tested algorithms ranged from 0.784 to 0.884. • Of the eight models, the Xception algorithm was the best performing model for the external validation dataset with 0.884 AUROC. The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value were 82.8%, 80.2%, 83.0%, 83.0%, and 80.2%, respectively. • The CAD system exhibited potential to improve diagnostic specificity and accuracy in underperforming trainees (3 of 6 trainees, 50.0%). This approach may have clinical utility as a training tool to help trainees to gain confidence in diagnoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助up采纳,获得10
1秒前
lilin完成签到,获得积分10
4秒前
一树春风发布了新的文献求助10
5秒前
小峰完成签到,获得积分20
5秒前
estella关注了科研通微信公众号
6秒前
6秒前
sirius完成签到,获得积分10
6秒前
调皮的薯片完成签到 ,获得积分10
7秒前
7秒前
janarbek应助SSS采纳,获得10
7秒前
JIaaaa完成签到,获得积分10
9秒前
lshu文应助朴实的绿兰采纳,获得30
9秒前
luolian发布了新的文献求助10
10秒前
Zhuzhu完成签到 ,获得积分10
11秒前
舒适的梦玉完成签到,获得积分10
11秒前
11秒前
DavidLiu完成签到,获得积分10
11秒前
小立发布了新的文献求助10
12秒前
喵喵发布了新的文献求助20
12秒前
13秒前
SciGPT应助wenlin采纳,获得10
13秒前
善良荧荧完成签到 ,获得积分10
14秒前
荒天帝石昊完成签到,获得积分10
16秒前
17秒前
estella发布了新的文献求助10
17秒前
yulong完成签到,获得积分10
17秒前
我是老大应助云澈采纳,获得10
18秒前
冷静新烟发布了新的文献求助10
18秒前
20秒前
22秒前
大模型应助大意的面包采纳,获得10
24秒前
24秒前
huayan发布了新的文献求助10
24秒前
25秒前
luolian完成签到,获得积分10
26秒前
烟花应助lily88采纳,获得10
29秒前
huayan完成签到,获得积分10
30秒前
junjun00发布了新的文献求助10
30秒前
停停走走发布了新的文献求助10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142206
求助须知:如何正确求助?哪些是违规求助? 2793191
关于积分的说明 7805737
捐赠科研通 2449467
什么是DOI,文献DOI怎么找? 1303333
科研通“疑难数据库(出版商)”最低求助积分说明 626821
版权声明 601291