亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of deep learning to the diagnosis of cervical lymph node metastasis from thyroid cancer with CT: external validation and clinical utility for resident training

医学 神经组阅片室 放射科 淋巴结转移 甲状腺癌 淋巴结 介入放射学 超声波 宫颈癌 医学物理学 癌症 转移 病理 内科学 神经学 精神科
作者
Jeong Hoon Lee,Eun Ju Ha,Dayoung Kim,Yong Jun Jung,Subin Heo,Yong-ho Jang,Sung Hyun An,Kyungmin Lee
出处
期刊:European Radiology [Springer Nature]
卷期号:30 (6): 3066-3072 被引量:77
标识
DOI:10.1007/s00330-019-06652-4
摘要

This study aimed to validate a deep learning model’s diagnostic performance in using computed tomography (CT) to diagnose cervical lymph node metastasis (LNM) from thyroid cancer in a large clinical cohort and to evaluate the model’s clinical utility for resident training. The performance of eight deep learning models was validated using 3838 axial CT images from 698 consecutive patients with thyroid cancer who underwent preoperative CT imaging between January and August 2018 (3606 and 232 images from benign and malignant lymph nodes, respectively). Six trainees viewed the same patient images (n = 242), and their diagnostic performance and confidence level (5-point scale) were assessed before and after computer-aided diagnosis (CAD) was included. The overall area under the receiver operating characteristics (AUROC) of the eight deep learning algorithms was 0.846 (range 0.784–0.884). The best performing model was Xception, with an AUROC of 0.884. The diagnostic accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of Xception were 82.8%, 80.2%, 83.0%, 83.0%, and 80.2%, respectively. After introducing the CAD system, underperforming trainees received more help from artificial intelligence than the higher performing trainees (p = 0.046), and overall confidence levels significantly increased from 3.90 to 4.30 (p < 0.001). The deep learning–based CAD system used in this study for CT diagnosis of cervical LNM from thyroid cancer was clinically validated with an AUROC of 0.884. This approach may serve as a training tool to help resident physicians to gain confidence in diagnosis. • A deep learning-based CAD system for CT diagnosis of cervical LNM from thyroid cancer was validated using data from a clinical cohort. The AUROC for the eight tested algorithms ranged from 0.784 to 0.884. • Of the eight models, the Xception algorithm was the best performing model for the external validation dataset with 0.884 AUROC. The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value were 82.8%, 80.2%, 83.0%, 83.0%, and 80.2%, respectively. • The CAD system exhibited potential to improve diagnostic specificity and accuracy in underperforming trainees (3 of 6 trainees, 50.0%). This approach may have clinical utility as a training tool to help trainees to gain confidence in diagnoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助冷酷跳跳糖采纳,获得10
1秒前
3秒前
繁星完成签到 ,获得积分10
8秒前
从来都不会放弃zr完成签到,获得积分10
13秒前
30秒前
35秒前
ys完成签到 ,获得积分10
37秒前
Criminology34应助科研通管家采纳,获得10
42秒前
Criminology34应助科研通管家采纳,获得10
42秒前
44秒前
HK完成签到 ,获得积分10
48秒前
冷酷跳跳糖完成签到,获得积分10
52秒前
1分钟前
1分钟前
Criminology34应助Double采纳,获得10
2分钟前
2分钟前
科目三应助laa采纳,获得10
2分钟前
辣手摧花526完成签到,获得积分20
2分钟前
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
丘比特应助ResKeZhang采纳,获得10
2分钟前
3分钟前
Yimin发布了新的文献求助80
3分钟前
Double完成签到,获得积分10
3分钟前
3分钟前
Double发布了新的文献求助10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Yimin完成签到,获得积分20
5分钟前
5分钟前
蒋杰应助辣手摧花526采纳,获得20
5分钟前
6分钟前
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
6分钟前
罗钦完成签到 ,获得积分10
6分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346630
求助须知:如何正确求助?哪些是违规求助? 4481113
关于积分的说明 13947295
捐赠科研通 4379029
什么是DOI,文献DOI怎么找? 2406149
邀请新用户注册赠送积分活动 1398713
关于科研通互助平台的介绍 1371523