Blended Ag nanofluids with optimized optical properties to regulate the performance of PV/T systems

纳米流体 材料科学 透射率 光电子学 光伏系统 太阳能电池 解耦(概率) 纳米技术 纳米颗粒 生态学 生物 工程类 控制工程
作者
Chunxiao Zhang,Chao Shen,Qianru Yang,Shen Wei,C. T. Sun
出处
期刊:Solar Energy [Elsevier]
卷期号:208: 623-636 被引量:35
标识
DOI:10.1016/j.solener.2020.08.037
摘要

Traditional PV/T systems, with passive cooling channels, can not solve the problem of coupling power/heat source on the surface of PV modules, resulting in lower electrical efficiency of solar cells. The active spectrum regulation technology using nanofluids, is a promising method to absorb spectrum energy not responding to solar cells, and reduce cell temperature and improve electricity efficiency. Though many nanofluids have been selected as optical nanofluids to separate/decoupling electricity and heat from composite spectral energy, no feasible method was proposed to select proper nanofluids to match the ideal window of solar cells. Therefore, from the view of spectrum regulation, some blended Ag nanofluids were present to numerically investigate the performance of PV/T systems, using a 2D-Monte Carlo method. Results indicated that nanoparticle radius, ranging from 20 nm to 60 nm, drove the movement of peak absorption from 395 nm to 520 nm, following a linear profile. Meanwhile, increased volume concentration and optical thickness reduced spectral transmittance, leading to lower cell temperature but worse output performance. Additionally, blended Ag nanofluids, with particle radius of 20 nm or 20/40 nm (8:2), volume concentration of 2.5 ppm and optical path of 10 mm, were optimal solutions for both Si cell and GaAs cell. The electrical efficiency and merit function value of Si cells were 11.85% and 1.61 for 20 nm nanofluid, 11.0% and 1.66 for 20/40 nm (8:2) nanofluid, while that of GaAs cell were 9.30% and 1.92 for 20 nm nanofluid, 9.03% and 2.05 for 20/40 nm (8:2) nanofluid, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
shan发布了新的文献求助10
2秒前
3秒前
研友_VZG7GZ应助HanGuilin采纳,获得10
4秒前
5秒前
科研助理发布了新的文献求助10
5秒前
lee完成签到,获得积分10
6秒前
科研通AI6.1应助闾丘剑封采纳,获得10
6秒前
6秒前
7秒前
华仔应助个性的长颈鹿采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
sound完成签到,获得积分10
7秒前
欣喜柚子发布了新的文献求助10
7秒前
绿光之城发布了新的文献求助10
8秒前
8秒前
欢呼靳完成签到 ,获得积分10
8秒前
8秒前
李希发布了新的文献求助20
9秒前
四叶菜完成签到,获得积分20
10秒前
小脑虎本虎给小脑虎本虎的求助进行了留言
10秒前
11秒前
11秒前
夏沫完成签到,获得积分10
12秒前
zhongxia完成签到 ,获得积分10
12秒前
12秒前
13秒前
狂野妙菱发布了新的文献求助10
13秒前
13秒前
13秒前
佳节发布了新的文献求助10
13秒前
13秒前
青易完成签到,获得积分10
14秒前
FashionBoy应助四叶菜采纳,获得10
14秒前
小蘑菇应助Zzy0816采纳,获得10
14秒前
hanyi完成签到 ,获得积分10
14秒前
刘奕欣应助007采纳,获得10
14秒前
jamejiang完成签到,获得积分10
15秒前
丘比特应助飘逸的白枫采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760818
求助须知:如何正确求助?哪些是违规求助? 5526191
关于积分的说明 15398334
捐赠科研通 4897505
什么是DOI,文献DOI怎么找? 2634199
邀请新用户注册赠送积分活动 1582335
关于科研通互助平台的介绍 1537676