已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Blended Ag nanofluids with optimized optical properties to regulate the performance of PV/T systems

纳米流体 材料科学 透射率 光电子学 光伏系统 太阳能电池 解耦(概率) 纳米技术 纳米颗粒 生态学 生物 工程类 控制工程
作者
Chunxiao Zhang,Chao Shen,Qianru Yang,Shen Wei,C. T. Sun
出处
期刊:Solar Energy [Elsevier]
卷期号:208: 623-636 被引量:35
标识
DOI:10.1016/j.solener.2020.08.037
摘要

Traditional PV/T systems, with passive cooling channels, can not solve the problem of coupling power/heat source on the surface of PV modules, resulting in lower electrical efficiency of solar cells. The active spectrum regulation technology using nanofluids, is a promising method to absorb spectrum energy not responding to solar cells, and reduce cell temperature and improve electricity efficiency. Though many nanofluids have been selected as optical nanofluids to separate/decoupling electricity and heat from composite spectral energy, no feasible method was proposed to select proper nanofluids to match the ideal window of solar cells. Therefore, from the view of spectrum regulation, some blended Ag nanofluids were present to numerically investigate the performance of PV/T systems, using a 2D-Monte Carlo method. Results indicated that nanoparticle radius, ranging from 20 nm to 60 nm, drove the movement of peak absorption from 395 nm to 520 nm, following a linear profile. Meanwhile, increased volume concentration and optical thickness reduced spectral transmittance, leading to lower cell temperature but worse output performance. Additionally, blended Ag nanofluids, with particle radius of 20 nm or 20/40 nm (8:2), volume concentration of 2.5 ppm and optical path of 10 mm, were optimal solutions for both Si cell and GaAs cell. The electrical efficiency and merit function value of Si cells were 11.85% and 1.61 for 20 nm nanofluid, 11.0% and 1.66 for 20/40 nm (8:2) nanofluid, while that of GaAs cell were 9.30% and 1.92 for 20 nm nanofluid, 9.03% and 2.05 for 20/40 nm (8:2) nanofluid, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清新发布了新的文献求助10
2秒前
anliu发布了新的文献求助30
2秒前
guojingjing完成签到,获得积分10
2秒前
万能图书馆应助almost采纳,获得10
3秒前
3秒前
科研通AI6应助Dreamchaser采纳,获得10
4秒前
5秒前
善学以致用应助bill采纳,获得10
7秒前
英姑应助科研小弟采纳,获得10
7秒前
共享精神应助醉熏的幼珊采纳,获得10
7秒前
znchick发布了新的文献求助50
8秒前
左鞅发布了新的文献求助10
8秒前
SciGPT应助酷酷念云采纳,获得10
9秒前
酷bile发布了新的文献求助10
10秒前
嘲风完成签到,获得积分10
10秒前
Ava应助pipi采纳,获得30
11秒前
深情安青应助八森木采纳,获得10
12秒前
可爱的函函应助DJDJDDDJ采纳,获得10
12秒前
dongua完成签到,获得积分10
16秒前
huangxuliang完成签到,获得积分10
17秒前
18秒前
19秒前
20秒前
满意花生完成签到,获得积分10
22秒前
23秒前
好哇关注了科研通微信公众号
23秒前
酷酷念云发布了新的文献求助10
25秒前
26秒前
清风发布了新的文献求助10
27秒前
27秒前
机灵的忆梅完成签到 ,获得积分10
28秒前
28秒前
我要向阳而生完成签到 ,获得积分10
28秒前
芽芽鸭完成签到,获得积分10
30秒前
30秒前
31秒前
32秒前
芽芽鸭发布了新的文献求助10
33秒前
敏感的雨寒关注了科研通微信公众号
33秒前
mm发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462799
求助须知:如何正确求助?哪些是违规求助? 4567554
关于积分的说明 14310837
捐赠科研通 4493410
什么是DOI,文献DOI怎么找? 2461607
邀请新用户注册赠送积分活动 1450711
关于科研通互助平台的介绍 1425919