Blended Ag nanofluids with optimized optical properties to regulate the performance of PV/T systems

纳米流体 材料科学 透射率 光电子学 光伏系统 太阳能电池 解耦(概率) 纳米技术 纳米颗粒 生态学 控制工程 生物 工程类
作者
Chunxiao Zhang,Chao Shen,Qianru Yang,Shen Wei,C. T. Sun
出处
期刊:Solar Energy [Elsevier BV]
卷期号:208: 623-636 被引量:35
标识
DOI:10.1016/j.solener.2020.08.037
摘要

Traditional PV/T systems, with passive cooling channels, can not solve the problem of coupling power/heat source on the surface of PV modules, resulting in lower electrical efficiency of solar cells. The active spectrum regulation technology using nanofluids, is a promising method to absorb spectrum energy not responding to solar cells, and reduce cell temperature and improve electricity efficiency. Though many nanofluids have been selected as optical nanofluids to separate/decoupling electricity and heat from composite spectral energy, no feasible method was proposed to select proper nanofluids to match the ideal window of solar cells. Therefore, from the view of spectrum regulation, some blended Ag nanofluids were present to numerically investigate the performance of PV/T systems, using a 2D-Monte Carlo method. Results indicated that nanoparticle radius, ranging from 20 nm to 60 nm, drove the movement of peak absorption from 395 nm to 520 nm, following a linear profile. Meanwhile, increased volume concentration and optical thickness reduced spectral transmittance, leading to lower cell temperature but worse output performance. Additionally, blended Ag nanofluids, with particle radius of 20 nm or 20/40 nm (8:2), volume concentration of 2.5 ppm and optical path of 10 mm, were optimal solutions for both Si cell and GaAs cell. The electrical efficiency and merit function value of Si cells were 11.85% and 1.61 for 20 nm nanofluid, 11.0% and 1.66 for 20/40 nm (8:2) nanofluid, while that of GaAs cell were 9.30% and 1.92 for 20 nm nanofluid, 9.03% and 2.05 for 20/40 nm (8:2) nanofluid, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
下雨天睡个懒觉完成签到,获得积分10
1秒前
丘比特应助强壮的美女采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
认真灯泡完成签到,获得积分10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
2秒前
2秒前
子车茗应助科研通管家采纳,获得30
2秒前
科目三应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得30
2秒前
爆米花应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
TheSail发布了新的文献求助10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
iNk应助科研通管家采纳,获得20
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
情怀应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226726
求助须知:如何正确求助?哪些是违规求助? 4398101
关于积分的说明 13688414
捐赠科研通 4262779
什么是DOI,文献DOI怎么找? 2339284
邀请新用户注册赠送积分活动 1336666
关于科研通互助平台的介绍 1292702