Blended Ag nanofluids with optimized optical properties to regulate the performance of PV/T systems

纳米流体 材料科学 透射率 光电子学 光伏系统 太阳能电池 解耦(概率) 纳米技术 纳米颗粒 生态学 生物 工程类 控制工程
作者
Chunxiao Zhang,Chao Shen,Qianru Yang,Shen Wei,C. T. Sun
出处
期刊:Solar Energy [Elsevier]
卷期号:208: 623-636 被引量:35
标识
DOI:10.1016/j.solener.2020.08.037
摘要

Traditional PV/T systems, with passive cooling channels, can not solve the problem of coupling power/heat source on the surface of PV modules, resulting in lower electrical efficiency of solar cells. The active spectrum regulation technology using nanofluids, is a promising method to absorb spectrum energy not responding to solar cells, and reduce cell temperature and improve electricity efficiency. Though many nanofluids have been selected as optical nanofluids to separate/decoupling electricity and heat from composite spectral energy, no feasible method was proposed to select proper nanofluids to match the ideal window of solar cells. Therefore, from the view of spectrum regulation, some blended Ag nanofluids were present to numerically investigate the performance of PV/T systems, using a 2D-Monte Carlo method. Results indicated that nanoparticle radius, ranging from 20 nm to 60 nm, drove the movement of peak absorption from 395 nm to 520 nm, following a linear profile. Meanwhile, increased volume concentration and optical thickness reduced spectral transmittance, leading to lower cell temperature but worse output performance. Additionally, blended Ag nanofluids, with particle radius of 20 nm or 20/40 nm (8:2), volume concentration of 2.5 ppm and optical path of 10 mm, were optimal solutions for both Si cell and GaAs cell. The electrical efficiency and merit function value of Si cells were 11.85% and 1.61 for 20 nm nanofluid, 11.0% and 1.66 for 20/40 nm (8:2) nanofluid, while that of GaAs cell were 9.30% and 1.92 for 20 nm nanofluid, 9.03% and 2.05 for 20/40 nm (8:2) nanofluid, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智的遥完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
li完成签到 ,获得积分10
3秒前
郭郭郭发布了新的文献求助10
3秒前
4秒前
czyzyzy完成签到,获得积分10
4秒前
Akim应助蜜桃乌龙采纳,获得10
4秒前
4秒前
4秒前
充电宝应助宁静致远采纳,获得10
4秒前
小民完成签到,获得积分20
5秒前
笑一七完成签到,获得积分20
5秒前
5秒前
5秒前
6秒前
stupid发布了新的文献求助30
6秒前
6秒前
6秒前
爱卿5271发布了新的文献求助10
7秒前
sresr完成签到,获得积分10
8秒前
8秒前
皮皮发布了新的文献求助30
8秒前
9秒前
秋紫霜发布了新的文献求助10
9秒前
Kestis.发布了新的文献求助10
10秒前
10秒前
LZX发布了新的文献求助60
10秒前
10秒前
qc发布了新的文献求助10
11秒前
木沐发布了新的文献求助10
11秒前
Limerencia发布了新的文献求助200
13秒前
勤奋的白桃完成签到,获得积分10
13秒前
15秒前
Jaden发布了新的文献求助10
15秒前
wyy发布了新的文献求助10
16秒前
18秒前
田様应助传说奢华采纳,获得10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633272
求助须知:如何正确求助?哪些是违规求助? 4728777
关于积分的说明 14985477
捐赠科研通 4791228
什么是DOI,文献DOI怎么找? 2558809
邀请新用户注册赠送积分活动 1519258
关于科研通互助平台的介绍 1479548