Blended Ag nanofluids with optimized optical properties to regulate the performance of PV/T systems

纳米流体 材料科学 透射率 光电子学 光伏系统 太阳能电池 解耦(概率) 纳米技术 纳米颗粒 生态学 生物 工程类 控制工程
作者
Chunxiao Zhang,Chao Shen,Qianru Yang,Shen Wei,C. T. Sun
出处
期刊:Solar Energy [Elsevier]
卷期号:208: 623-636 被引量:35
标识
DOI:10.1016/j.solener.2020.08.037
摘要

Traditional PV/T systems, with passive cooling channels, can not solve the problem of coupling power/heat source on the surface of PV modules, resulting in lower electrical efficiency of solar cells. The active spectrum regulation technology using nanofluids, is a promising method to absorb spectrum energy not responding to solar cells, and reduce cell temperature and improve electricity efficiency. Though many nanofluids have been selected as optical nanofluids to separate/decoupling electricity and heat from composite spectral energy, no feasible method was proposed to select proper nanofluids to match the ideal window of solar cells. Therefore, from the view of spectrum regulation, some blended Ag nanofluids were present to numerically investigate the performance of PV/T systems, using a 2D-Monte Carlo method. Results indicated that nanoparticle radius, ranging from 20 nm to 60 nm, drove the movement of peak absorption from 395 nm to 520 nm, following a linear profile. Meanwhile, increased volume concentration and optical thickness reduced spectral transmittance, leading to lower cell temperature but worse output performance. Additionally, blended Ag nanofluids, with particle radius of 20 nm or 20/40 nm (8:2), volume concentration of 2.5 ppm and optical path of 10 mm, were optimal solutions for both Si cell and GaAs cell. The electrical efficiency and merit function value of Si cells were 11.85% and 1.61 for 20 nm nanofluid, 11.0% and 1.66 for 20/40 nm (8:2) nanofluid, while that of GaAs cell were 9.30% and 1.92 for 20 nm nanofluid, 9.03% and 2.05 for 20/40 nm (8:2) nanofluid, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lockedcc发布了新的文献求助10
刚刚
Orange应助Evan采纳,获得10
刚刚
小二郎应助ll采纳,获得10
3秒前
3秒前
领导范儿应助机器猫采纳,获得10
3秒前
妮子发布了新的文献求助10
5秒前
xummer发布了新的文献求助10
6秒前
烟花应助qqq采纳,获得10
6秒前
Mic应助lijiauyi1994采纳,获得10
7秒前
7秒前
小王同学完成签到,获得积分10
8秒前
栗子呢呢呢完成签到 ,获得积分10
8秒前
黎靖仇完成签到 ,获得积分10
10秒前
甜甜的冰淇淋完成签到,获得积分10
10秒前
12秒前
英姑应助Doctor采纳,获得10
12秒前
苗条的元风完成签到,获得积分10
13秒前
Wey完成签到,获得积分10
14秒前
酷波er应助bridge采纳,获得10
14秒前
15秒前
大模型应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
Akim应助科研通管家采纳,获得10
16秒前
可爱的函函应助12345采纳,获得10
16秒前
彭于晏应助科研通管家采纳,获得10
16秒前
大模型应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
Mic应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
马龙发布了新的文献求助10
17秒前
慕青应助科研通管家采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
桐桐应助科研通管家采纳,获得20
17秒前
CipherSage应助科研通管家采纳,获得10
17秒前
烟花应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424665
求助须知:如何正确求助?哪些是违规求助? 4539081
关于积分的说明 14164862
捐赠科研通 4456109
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435127
关于科研通互助平台的介绍 1412469