Truss-based Community Search over Large Directed Graphs

桁架 计算机科学 搜索引擎索引 群落结构 理论计算机科学 局部搜索(优化) 时间复杂性 无向图 数学优化 图形 算法 数学 人工智能 组合数学 结构工程 工程类
作者
Qing Liu,Minjun Zhao,Xin Huang,Jianliang Xu,Yunjun Gao
标识
DOI:10.1145/3318464.3380587
摘要

Community search enables personalized community discovery and has wide applications in large real-world graphs. While community search has been extensively studied for undirected graphs, the problem for directed graphs has received attention only recently. However, existing studies suffer from several drawbacks, e.g., the vertices with varied in-degrees and out-degrees cannot be included in a community at the same time. To address the limitations, in this paper, we systematically study the problem of community search over large directed graphs. We start by presenting a novel community model, called D-truss, based on two distinct types of directed triangles, i.e., flow triangle and cycle triangle. The D-truss model brings nice structural and computational properties and has many advantages in comparison with the existing models. With this new model, we then formulate the D-truss community search problem, which is proved to be NP-hard. In view of its hardness, we propose two efficient 2-approximation algorithms, named Global and Local, that run in polynomial time yet with quality guarantee. To further improve the efficiency of the algorithms, we devise an indexing method based on D-truss decomposition. Consequently, the D-truss community search can be solved upon the D-truss index without time-consuming accesses to the original graph. Experimental studies on real-world graphs with ground-truth communities validate the quality of the solutions we obtain and the efficiency of the proposed algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Sea_U完成签到,获得积分0
2秒前
坤坤完成签到,获得积分10
3秒前
彭于晏应助zwy109采纳,获得10
3秒前
小星星完成签到,获得积分20
3秒前
钱罐罐发布了新的文献求助10
4秒前
科研通AI5应助整齐百褶裙采纳,获得10
5秒前
6秒前
8秒前
9秒前
10秒前
有魅力乌发布了新的文献求助10
11秒前
adamchris应助不会做科研采纳,获得100
11秒前
晨曦发布了新的文献求助10
12秒前
Kris发布了新的文献求助10
13秒前
zwy109发布了新的文献求助10
15秒前
英姑应助钱罐罐采纳,获得10
15秒前
东耦完成签到,获得积分10
23秒前
打打应助Kris采纳,获得10
25秒前
25秒前
26秒前
情怀应助超级的鹅采纳,获得10
26秒前
26秒前
战斗暴龙兽完成签到,获得积分10
27秒前
27秒前
isojso完成签到,获得积分10
27秒前
27秒前
有魅力乌完成签到,获得积分10
27秒前
29秒前
30秒前
Lily发布了新的文献求助10
32秒前
33秒前
33秒前
34秒前
34秒前
fhh完成签到,获得积分20
37秒前
38秒前
39秒前
慕青应助执着又蓝采纳,获得10
39秒前
123完成签到,获得积分10
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988997
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253520
捐赠科研通 3269928
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068