A Hierarchical Neural Network for Sleep Stage Classification Based on Comprehensive Feature Learning and Multi-Flow Sequence Learning

计算机科学 人工智能 人工神经网络 多导睡眠图 睡眠阶段 特征(语言学) 循环神经网络 深度学习 模式识别(心理学) 机器学习 特征提取 脑电图 心理学 语言学 精神科 哲学
作者
Chenglu Sun,Chen Chen,Wei Li,Jiahao Fan,Wei Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (5): 1351-1366 被引量:76
标识
DOI:10.1109/jbhi.2019.2937558
摘要

Automatic sleep staging methods usually extract hand-crafted features or network trained features from signals recorded by polysomnography (PSG), and then estimate the stages by various classifiers. In this study, we propose a classification approach based on a hierarchical neural network to process multi-channel PSG signals for improving the performance of automatic five-class sleep staging. The proposed hierarchical network contains two stages: comprehensive feature learning stage and sequence learning stage. The first stage is used to obtain the feature matrix by fusing the hand-crafted features and network trained features. A multi-flow recurrent neural network (RNN) as the second stage is utilized to fully learn temporal information between sleep epochs and fine-tune the parameters in the first stage. The proposed model was evaluated by 147 full night recordings in a public sleep database, the Montreal Archive of Sleep Studies (MASS). The proposed approach can achieve the overall accuracy of 0.878, and the F1-score is 0.818. The results show that the approach can achieve better performance compared to the state-of-the-art methods. Ablation experiment and model analysis proved the effectiveness of different components of the proposed model. The proposed approach allows automatic sleep stage classification by multi-channel PSG signals with different criteria standards, signal characteristics, and epoch divisions, and it has the potential to exploit sleep information comprehensively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
良辰应助科研通管家采纳,获得10
2秒前
良辰应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
AAA应助科研通管家采纳,获得20
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
一一应助科研通管家采纳,获得20
3秒前
见青山应助科研通管家采纳,获得10
3秒前
一一应助科研通管家采纳,获得20
3秒前
良辰应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
良辰应助科研通管家采纳,获得10
3秒前
良辰应助科研通管家采纳,获得10
3秒前
见青山应助科研通管家采纳,获得10
3秒前
陨_0614完成签到 ,获得积分10
4秒前
仙鹤草发布了新的文献求助10
5秒前
幸福遥完成签到,获得积分10
6秒前
7秒前
8秒前
11秒前
11秒前
Xiaoshen发布了新的文献求助10
13秒前
咚咚发布了新的文献求助10
14秒前
研友_841e4L完成签到,获得积分10
14秒前
wangxy完成签到,获得积分10
14秒前
zly完成签到 ,获得积分10
15秒前
15秒前
JY发布了新的文献求助10
17秒前
17秒前
110o发布了新的文献求助10
20秒前
20秒前
21秒前
JY完成签到,获得积分10
21秒前
十三发布了新的文献求助10
22秒前
开朗的抽屉完成签到 ,获得积分10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3293655
求助须知:如何正确求助?哪些是违规求助? 2929514
关于积分的说明 8442579
捐赠科研通 2601686
什么是DOI,文献DOI怎么找? 1420069
科研通“疑难数据库(出版商)”最低求助积分说明 660493
邀请新用户注册赠送积分活动 643102