A Hierarchical Neural Network for Sleep Stage Classification Based on Comprehensive Feature Learning and Multi-Flow Sequence Learning

计算机科学 人工智能 人工神经网络 多导睡眠图 睡眠阶段 特征(语言学) 循环神经网络 深度学习 模式识别(心理学) 机器学习 特征提取 脑电图 心理学 语言学 精神科 哲学
作者
Chenglu Sun,Chen Chen,Wei Li,Jiahao Fan,Wei Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (5): 1351-1366 被引量:78
标识
DOI:10.1109/jbhi.2019.2937558
摘要

Automatic sleep staging methods usually extract hand-crafted features or network trained features from signals recorded by polysomnography (PSG), and then estimate the stages by various classifiers. In this study, we propose a classification approach based on a hierarchical neural network to process multi-channel PSG signals for improving the performance of automatic five-class sleep staging. The proposed hierarchical network contains two stages: comprehensive feature learning stage and sequence learning stage. The first stage is used to obtain the feature matrix by fusing the hand-crafted features and network trained features. A multi-flow recurrent neural network (RNN) as the second stage is utilized to fully learn temporal information between sleep epochs and fine-tune the parameters in the first stage. The proposed model was evaluated by 147 full night recordings in a public sleep database, the Montreal Archive of Sleep Studies (MASS). The proposed approach can achieve the overall accuracy of 0.878, and the F1-score is 0.818. The results show that the approach can achieve better performance compared to the state-of-the-art methods. Ablation experiment and model analysis proved the effectiveness of different components of the proposed model. The proposed approach allows automatic sleep stage classification by multi-channel PSG signals with different criteria standards, signal characteristics, and epoch divisions, and it has the potential to exploit sleep information comprehensively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
共享精神应助拟拟采纳,获得10
刚刚
刚刚
lhy12345完成签到,获得积分10
刚刚
非常可爱发布了新的文献求助20
1秒前
1秒前
1秒前
1秒前
科研民工发布了新的文献求助10
2秒前
文艺的初蓝完成签到 ,获得积分10
2秒前
TiAmo发布了新的文献求助10
2秒前
刘十三完成签到,获得积分10
2秒前
2秒前
犹豫忆南完成签到,获得积分10
3秒前
科研通AI5应助kingwhitewing采纳,获得10
4秒前
4秒前
mm关注了科研通微信公众号
4秒前
xieyuanxing发布了新的文献求助10
4秒前
4秒前
左然然完成签到,获得积分10
4秒前
4秒前
人福药业完成签到,获得积分10
5秒前
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
细腻晓露发布了新的文献求助10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
5秒前
三里墩头应助科研通管家采纳,获得10
5秒前
天线宝宝应助科研通管家采纳,获得10
5秒前
wing00024完成签到,获得积分10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
5秒前
小马甲应助科研通管家采纳,获得10
6秒前
控制小弟应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
Leif应助科研通管家采纳,获得20
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740