A Hierarchical Neural Network for Sleep Stage Classification Based on Comprehensive Feature Learning and Multi-Flow Sequence Learning

计算机科学 人工智能 人工神经网络 多导睡眠图 睡眠阶段 特征(语言学) 循环神经网络 深度学习 模式识别(心理学) 机器学习 特征提取 脑电图 心理学 语言学 哲学 精神科
作者
Chenglu Sun,Chen Chen,Wei Li,Jiahao Fan,Wei Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (5): 1351-1366 被引量:78
标识
DOI:10.1109/jbhi.2019.2937558
摘要

Automatic sleep staging methods usually extract hand-crafted features or network trained features from signals recorded by polysomnography (PSG), and then estimate the stages by various classifiers. In this study, we propose a classification approach based on a hierarchical neural network to process multi-channel PSG signals for improving the performance of automatic five-class sleep staging. The proposed hierarchical network contains two stages: comprehensive feature learning stage and sequence learning stage. The first stage is used to obtain the feature matrix by fusing the hand-crafted features and network trained features. A multi-flow recurrent neural network (RNN) as the second stage is utilized to fully learn temporal information between sleep epochs and fine-tune the parameters in the first stage. The proposed model was evaluated by 147 full night recordings in a public sleep database, the Montreal Archive of Sleep Studies (MASS). The proposed approach can achieve the overall accuracy of 0.878, and the F1-score is 0.818. The results show that the approach can achieve better performance compared to the state-of-the-art methods. Ablation experiment and model analysis proved the effectiveness of different components of the proposed model. The proposed approach allows automatic sleep stage classification by multi-channel PSG signals with different criteria standards, signal characteristics, and epoch divisions, and it has the potential to exploit sleep information comprehensively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阿德利企鹅完成签到 ,获得积分10
1秒前
2秒前
阚钲翰发布了新的文献求助10
3秒前
3秒前
简单的诗槐完成签到,获得积分10
4秒前
ZHANGJIAN发布了新的文献求助10
4秒前
林白生关注了科研通微信公众号
4秒前
机智冬灵发布了新的文献求助10
5秒前
迷路海蓝发布了新的文献求助30
6秒前
轮海完成签到,获得积分10
7秒前
9秒前
科研通AI2S应助中午吃什么采纳,获得10
10秒前
慕新完成签到,获得积分10
11秒前
11秒前
13秒前
112233发布了新的文献求助10
13秒前
15秒前
15秒前
15秒前
曾经的刺猬完成签到,获得积分10
15秒前
16秒前
LALA发布了新的文献求助10
16秒前
17秒前
干净的凡桃完成签到,获得积分10
17秒前
18秒前
文子发布了新的文献求助10
19秒前
21秒前
branka完成签到,获得积分10
21秒前
22秒前
风趣寄凡发布了新的文献求助10
23秒前
24秒前
Liu应助lf采纳,获得30
24秒前
SciGPT应助酷炫的归尘采纳,获得10
24秒前
25秒前
25秒前
鲤鱼新竹发布了新的文献求助10
26秒前
26秒前
28秒前
LEMONS应助qqqqgc采纳,获得10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956068
求助须知:如何正确求助?哪些是违规求助? 3502276
关于积分的说明 11107024
捐赠科研通 3232788
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870389
科研通“疑难数据库(出版商)”最低求助积分说明 802011