亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mean Performance and Stability in Multi‐Environment Trials I: Combining Features of AMMI and BLUP Techniques

阿米 最佳线性无偏预测 双标图 加权 理论(学习稳定性) 选择(遗传算法) 数学 统计 主成分分析 混合模型 计算机科学 基因-环境相互作用 机器学习 基因型 生物 基因 医学 生物化学 放射科
作者
Tiago Olivoto,Alessandro Dal’Cól Lúcio,José Antônio Gonzalez da Silva,Volmir Sérgio Marchioro,Velci Queiróz de Souza,Evandro Jost
出处
期刊:Agronomy Journal [Wiley]
卷期号:111 (6): 2949-2960 被引量:304
标识
DOI:10.2134/agronj2019.03.0220
摘要

Additive main effect and multiplicative interaction (AMMI) and best linear unbiased prediction (BLUP) are popular methods for analyzing multi‐environment trials (MET). The AMMI has nice graphical tools for modeling genotype‐vs.‐environment interaction (GEI) but fails in some aspects, such as accommodating a linear mixed‐effect model (LMM) structure. The BLUP provides reliable estimates but new insights to deal graphically with a random GEI structure are needed. This article compares the predictive success of BLUP and AMMI, shows how to generate biplots for modeling GEI in MET analysis using LMM, and proposes a new quantitative genotypic stability measure called WAASB, which is the W eighted A verage of A bsolute S cores from the singular value decomposition of the matrix of BLUPs for the GEI effects generated by an LMM. We also introduced the theoretical basis of a superiority index that allows weighting between mean performance and stability, which was conveniently called WAASBY. The B LUP was found to outperform AMMI in the analysis of four real MET trials. The application of our indexes is illustrated using an oat ( Avena sativa L.) MET dataset. It was shown that reliable measures of stability using WAASB may help breeders and agronomists to make correct decisions when selecting or recommending genotypes. In addition, the simultaneous selection index, WAASBY, will be useful when the selection should consider different weights for stability and mean performance. Some advantages over existing statistics are discussed. Finally, the implementation of the procedures of this article in future studies is facilitated by an R package containing all required functions. Core Ideas The predictive accuracy of BLUP and AMMI was investigated using four real datasets. BLUP was found to outperform AMMI in all datasets analyzed. A genotypic stability index that inherits the principles of AMMI and BLUP was proposed. A superiority index that allows weighting between mean performance and stability was proposed. An R package with useful functions for MET analysis is presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助科研通管家采纳,获得10
4秒前
12秒前
huangwensou发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
共享精神应助科研小菜鸡采纳,获得10
3分钟前
3分钟前
彼岸花开发布了新的文献求助200
3分钟前
huahuao发布了新的文献求助10
3分钟前
AMENG完成签到,获得积分10
3分钟前
huahuao完成签到,获得积分10
3分钟前
俭朴蜜蜂完成签到 ,获得积分10
3分钟前
3分钟前
SCI完成签到,获得积分10
3分钟前
4分钟前
李爱国应助科研通管家采纳,获得10
4分钟前
大个应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
北方完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
5分钟前
张土豆完成签到 ,获得积分10
5分钟前
科研小菜鸡完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得30
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
蝈蝈完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
6分钟前
禹山河发布了新的文献求助10
7分钟前
李健的小迷弟应助禹山河采纳,获得10
7分钟前
lmplzzp完成签到,获得积分10
7分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960091
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128619
捐赠科研通 3238289
什么是DOI,文献DOI怎么找? 1789671
邀请新用户注册赠送积分活动 871846
科研通“疑难数据库(出版商)”最低求助积分说明 803069