Mean Performance and Stability in Multi‐Environment Trials I: Combining Features of AMMI and BLUP Techniques

阿米 最佳线性无偏预测 双标图 加权 理论(学习稳定性) 选择(遗传算法) 数学 统计 主成分分析 混合模型 计算机科学 基因-环境相互作用 机器学习 基因型 生物 基因 医学 生物化学 放射科
作者
Tiago Olivoto,Alessandro Dal’Cól Lúcio,José Antônio Gonzalez da Silva,Volmir Sérgio Marchioro,Velci Queiróz de Souza,Evandro Jost
出处
期刊:Agronomy Journal [Wiley]
卷期号:111 (6): 2949-2960 被引量:304
标识
DOI:10.2134/agronj2019.03.0220
摘要

Additive main effect and multiplicative interaction (AMMI) and best linear unbiased prediction (BLUP) are popular methods for analyzing multi‐environment trials (MET). The AMMI has nice graphical tools for modeling genotype‐vs.‐environment interaction (GEI) but fails in some aspects, such as accommodating a linear mixed‐effect model (LMM) structure. The BLUP provides reliable estimates but new insights to deal graphically with a random GEI structure are needed. This article compares the predictive success of BLUP and AMMI, shows how to generate biplots for modeling GEI in MET analysis using LMM, and proposes a new quantitative genotypic stability measure called WAASB, which is the W eighted A verage of A bsolute S cores from the singular value decomposition of the matrix of BLUPs for the GEI effects generated by an LMM. We also introduced the theoretical basis of a superiority index that allows weighting between mean performance and stability, which was conveniently called WAASBY. The B LUP was found to outperform AMMI in the analysis of four real MET trials. The application of our indexes is illustrated using an oat ( Avena sativa L.) MET dataset. It was shown that reliable measures of stability using WAASB may help breeders and agronomists to make correct decisions when selecting or recommending genotypes. In addition, the simultaneous selection index, WAASBY, will be useful when the selection should consider different weights for stability and mean performance. Some advantages over existing statistics are discussed. Finally, the implementation of the procedures of this article in future studies is facilitated by an R package containing all required functions. Core Ideas The predictive accuracy of BLUP and AMMI was investigated using four real datasets. BLUP was found to outperform AMMI in all datasets analyzed. A genotypic stability index that inherits the principles of AMMI and BLUP was proposed. A superiority index that allows weighting between mean performance and stability was proposed. An R package with useful functions for MET analysis is presented.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shenqueying完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
hao关闭了hao文献求助
1秒前
1秒前
余晨发布了新的文献求助10
2秒前
2秒前
HOAN应助Maggie采纳,获得30
2秒前
所所应助ttrhoton采纳,获得10
3秒前
shenqueying发布了新的文献求助10
3秒前
大模型应助Agnes采纳,获得10
3秒前
3秒前
4秒前
qixycn完成签到,获得积分10
4秒前
缥缈的越彬完成签到,获得积分10
4秒前
4秒前
无敌醉熊完成签到,获得积分10
4秒前
6秒前
脑洞疼应助着急的黄豆采纳,获得10
7秒前
lidd发布了新的文献求助20
7秒前
mwj发布了新的文献求助10
8秒前
Jerry完成签到 ,获得积分10
8秒前
9秒前
幸福遥完成签到 ,获得积分10
9秒前
微笑语山完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
陶醉觅夏发布了新的文献求助100
11秒前
11秒前
12秒前
13秒前
余晨完成签到,获得积分20
14秒前
xiuuu发布了新的文献求助10
15秒前
芽芽豆完成签到 ,获得积分10
15秒前
ttrhoton发布了新的文献求助10
16秒前
顾矜应助文艺的蜜蜂采纳,获得10
17秒前
17秒前
自由的含双完成签到,获得积分10
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717929
求助须知:如何正确求助?哪些是违规求助? 5249249
关于积分的说明 15283791
捐赠科研通 4867991
什么是DOI,文献DOI怎么找? 2614002
邀请新用户注册赠送积分活动 1563914
关于科研通互助平台的介绍 1521377