Mean Performance and Stability in Multi‐Environment Trials I: Combining Features of AMMI and BLUP Techniques

阿米 最佳线性无偏预测 双标图 加权 理论(学习稳定性) 选择(遗传算法) 数学 统计 主成分分析 混合模型 计算机科学 基因-环境相互作用 机器学习 基因型 生物 基因 医学 生物化学 放射科
作者
Tiago Olivoto,Alessandro Dal’Cól Lúcio,José Antônio Gonzalez da Silva,Volmir Sérgio Marchioro,Velci Queiróz de Souza,Evandro Jost
出处
期刊:Agronomy Journal [Wiley]
卷期号:111 (6): 2949-2960 被引量:304
标识
DOI:10.2134/agronj2019.03.0220
摘要

Additive main effect and multiplicative interaction (AMMI) and best linear unbiased prediction (BLUP) are popular methods for analyzing multi‐environment trials (MET). The AMMI has nice graphical tools for modeling genotype‐vs.‐environment interaction (GEI) but fails in some aspects, such as accommodating a linear mixed‐effect model (LMM) structure. The BLUP provides reliable estimates but new insights to deal graphically with a random GEI structure are needed. This article compares the predictive success of BLUP and AMMI, shows how to generate biplots for modeling GEI in MET analysis using LMM, and proposes a new quantitative genotypic stability measure called WAASB, which is the W eighted A verage of A bsolute S cores from the singular value decomposition of the matrix of BLUPs for the GEI effects generated by an LMM. We also introduced the theoretical basis of a superiority index that allows weighting between mean performance and stability, which was conveniently called WAASBY. The B LUP was found to outperform AMMI in the analysis of four real MET trials. The application of our indexes is illustrated using an oat ( Avena sativa L.) MET dataset. It was shown that reliable measures of stability using WAASB may help breeders and agronomists to make correct decisions when selecting or recommending genotypes. In addition, the simultaneous selection index, WAASBY, will be useful when the selection should consider different weights for stability and mean performance. Some advantages over existing statistics are discussed. Finally, the implementation of the procedures of this article in future studies is facilitated by an R package containing all required functions. Core Ideas The predictive accuracy of BLUP and AMMI was investigated using four real datasets. BLUP was found to outperform AMMI in all datasets analyzed. A genotypic stability index that inherits the principles of AMMI and BLUP was proposed. A superiority index that allows weighting between mean performance and stability was proposed. An R package with useful functions for MET analysis is presented.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wanwusheng完成签到,获得积分10
1秒前
落后爆米花完成签到,获得积分10
1秒前
2秒前
2秒前
zch发布了新的文献求助10
2秒前
laohu完成签到,获得积分10
3秒前
3秒前
mamaogui完成签到,获得积分10
3秒前
大气白翠完成签到,获得积分10
3秒前
王小小完成签到,获得积分10
3秒前
dd完成签到,获得积分10
3秒前
4秒前
yyy完成签到,获得积分10
4秒前
yeandpeng发布了新的文献求助10
5秒前
蛋炒饭完成签到,获得积分10
5秒前
俭朴的发带完成签到,获得积分10
5秒前
5秒前
111完成签到,获得积分10
5秒前
十一完成签到,获得积分20
5秒前
缥缈雪碧完成签到,获得积分20
5秒前
5秒前
mamaogui发布了新的文献求助10
6秒前
bear发布了新的文献求助10
6秒前
小马甲应助高高高采纳,获得10
6秒前
菜菜发布了新的文献求助20
6秒前
不见木棉完成签到,获得积分10
6秒前
JIAca发布了新的文献求助10
6秒前
南宫尔蓝完成签到,获得积分10
7秒前
汛钥发布了新的文献求助10
7秒前
7秒前
橙子驳回了烟花应助
7秒前
英俊的铭应助sg123_采纳,获得10
7秒前
7秒前
粉色小妖精完成签到,获得积分10
7秒前
小小平完成签到,获得积分10
8秒前
Qian完成签到 ,获得积分10
8秒前
王楠楠完成签到 ,获得积分10
8秒前
爱学习的婷完成签到 ,获得积分10
8秒前
立麦完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034