Mean Performance and Stability in Multi‐Environment Trials I: Combining Features of AMMI and BLUP Techniques

阿米 最佳线性无偏预测 双标图 加权 理论(学习稳定性) 选择(遗传算法) 数学 统计 主成分分析 混合模型 计算机科学 基因-环境相互作用 机器学习 基因型 生物 基因 医学 生物化学 放射科
作者
Tiago Olivoto,Alessandro Dal’Cól Lúcio,José Antônio Gonzalez da Silva,Volmir Sérgio Marchioro,Velci Queiróz de Souza,Evandro Jost
出处
期刊:Agronomy Journal [Wiley]
卷期号:111 (6): 2949-2960 被引量:304
标识
DOI:10.2134/agronj2019.03.0220
摘要

Additive main effect and multiplicative interaction (AMMI) and best linear unbiased prediction (BLUP) are popular methods for analyzing multi‐environment trials (MET). The AMMI has nice graphical tools for modeling genotype‐vs.‐environment interaction (GEI) but fails in some aspects, such as accommodating a linear mixed‐effect model (LMM) structure. The BLUP provides reliable estimates but new insights to deal graphically with a random GEI structure are needed. This article compares the predictive success of BLUP and AMMI, shows how to generate biplots for modeling GEI in MET analysis using LMM, and proposes a new quantitative genotypic stability measure called WAASB, which is the W eighted A verage of A bsolute S cores from the singular value decomposition of the matrix of BLUPs for the GEI effects generated by an LMM. We also introduced the theoretical basis of a superiority index that allows weighting between mean performance and stability, which was conveniently called WAASBY. The B LUP was found to outperform AMMI in the analysis of four real MET trials. The application of our indexes is illustrated using an oat ( Avena sativa L.) MET dataset. It was shown that reliable measures of stability using WAASB may help breeders and agronomists to make correct decisions when selecting or recommending genotypes. In addition, the simultaneous selection index, WAASBY, will be useful when the selection should consider different weights for stability and mean performance. Some advantages over existing statistics are discussed. Finally, the implementation of the procedures of this article in future studies is facilitated by an R package containing all required functions. Core Ideas The predictive accuracy of BLUP and AMMI was investigated using four real datasets. BLUP was found to outperform AMMI in all datasets analyzed. A genotypic stability index that inherits the principles of AMMI and BLUP was proposed. A superiority index that allows weighting between mean performance and stability was proposed. An R package with useful functions for MET analysis is presented.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐应助炙热小小采纳,获得10
刚刚
splatoon完成签到,获得积分10
1秒前
Tingting发布了新的文献求助10
1秒前
Kate发布了新的文献求助10
1秒前
1秒前
1秒前
斯文败类应助stone采纳,获得10
1秒前
小灰灰发布了新的文献求助10
1秒前
crowd_lpy完成签到,获得积分10
1秒前
Flaoun4发布了新的文献求助10
1秒前
3秒前
852应助梦茵采纳,获得10
3秒前
Culto发布了新的文献求助10
3秒前
TTOM完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
Richard发布了新的文献求助10
5秒前
合适苗条发布了新的文献求助10
5秒前
内向苡完成签到,获得积分10
5秒前
5秒前
清风拂山岗完成签到,获得积分10
5秒前
6秒前
花誓lydia发布了新的文献求助10
6秒前
7秒前
Twonej应助ZLY采纳,获得30
8秒前
8秒前
123发布了新的文献求助10
9秒前
9秒前
烟花应助QGK采纳,获得30
9秒前
小冉发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
momo发布了新的文献求助10
11秒前
n1gern发布了新的文献求助10
11秒前
Flaoun4完成签到,获得积分10
12秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646269
求助须知:如何正确求助?哪些是违规求助? 4770756
关于积分的说明 15034169
捐赠科研通 4805036
什么是DOI,文献DOI怎么找? 2569371
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812