Deregulated proliferation of tumors is generally associated with altered energy metabolism. A high rate of anaerobic glycolysis in solid tumors contributes to an acidification of pH to ∼6.7–7.2 in the tumor microenvironment and lactate accumulation. Macrophages in the tumor microenvironment can be educated by tumor cells. Tumor-derived lactate induces the polarization of M2 macrophages and promotes tumor invasion and metastasis. However, a particular challenge is to sustain lactate depletion. We propose that the repolarization of the tumor-supportive M2 macrophage to the tumor-suppressive M1 macrophage after the depletion of lactate by lactate oxidase (LOX) released from the hydrogels in the tumor microenvironment may enhance the antitumor treatment efficacy.