Abstract Alloyed bismuth oxyhalides have been widely used in photocatalytic water treatment processes due to their superior photocatalytic activity. However, there is no report on the removal of NO 3 − for alloyed bismuth oxyhalides, and the mechanism of the effect of alloying on NO 3 − reduction activity is still unclear. In this work, we prepared a series of BiOCl n Br 1‐n (0≤n≤1) with different Cl/Br ratios but with controlled similar morphologies, and explored their catalytic activities on reducing NO 3 − under visible light irradiation. Density functional theory investigations revealed that the formation energy for an oxygen (O) vacancy on the surface of BiOCl n Br 1‐n alloys is clearly reduced in comparison with the monohalide, illustrating that more O vacancies can be produced on the surface of BiOCl n Br 1‐n alloys. A high concentration of O vacancies not only promotes the adsorption of NO 3 − but also enhances the separation efficiency of the photogenerated electron‐hole (e–h) pairs, with both being beneficial to enhance the photocatalytic activity of BiOCl n Br 1‐n alloys for NO 3 − reduction. These new discoveries not only promote the design and development of new photocatalysts with excellent NO 3 − reduction properties, but also help to understand the relationship between alloying effects and semiconductor photocatalytic properties.