数学
函子
内射函数
纯数学
群上同调
上同调
局部上同调
派生函子
外函子
分辨率(逻辑)
上同调
等变上同调
动力上同调
连接(主束)
拓扑(电路)
德拉姆上同调
组合数学
几何学
计算机科学
有限生成交换群
人工智能
标识
DOI:10.1080/00927872.2016.1175582
摘要
Let $R$ be a Gorenstein local ring, $\frak{a}$ an ideal in $R$, and $M$ an $R$-module. The local cohomology of $M$ supported at $\frak{a}$ can be computed by applying the $\frak{a}$-torsion functor to an injective resolution of $M$. Since $R$ is Gorenstein, $M$ has a complete injective resolution, so it is natural to ask what one gets by applying the $\frak{a}$-torsion functor to it. Following this lead, we define stable local cohomology for modules with complete injective resolutions. This gives a functor to the stable category of Gorenstein injective modules. We show that in many ways this behaves like the usual local cohomology functor. Our main result is that when there is only one non-zero local cohomology module, there is a strong connection between that module and the stable local cohomology module; in fact, the latter gives a Gorenstein injective approximation of the former.
科研通智能强力驱动
Strongly Powered by AbleSci AI