人工智能
计算机科学
图像(数学)
融合
编码(集合论)
图像融合
滤波器(信号处理)
集合(抽象数据类型)
图像分辨率
序列(生物学)
图像质量
模式识别(心理学)
相似性(几何)
复合图像滤波器
卷积神经网络
源代码
图像处理
深度学习
网(多面体)
算法
计算机视觉
数学
操作系统
生物
哲学
遗传学
语言学
程序设计语言
几何学
作者
Kede Ma,Zhengfang Duanmu,Hanwei Zhu,Yuming Fang,Zhou Wang
出处
期刊:IEEE transactions on image processing
[Institute of Electrical and Electronics Engineers]
日期:2019-11-19
卷期号:29: 2808-2819
被引量:137
标识
DOI:10.1109/tip.2019.2952716
摘要
We propose a fast multi-exposure image fusion (MEF) method, namely MEF-Net, for static image sequences of arbitrary spatial resolution and exposure number. We first feed a low-resolution version of the input sequence to a fully convolutional network for weight map prediction. We then jointly upsample the weight maps using a guided filter. The final image is computed by a weighted fusion. Unlike conventional MEF methods, MEF-Net is trained end-to-end by optimizing the perceptually calibrated MEF structural similarity (MEF-SSIM) index over a database of training sequences at full resolution. Across an independent set of test sequences, we find that the optimized MEF-Net achieves consistent improvement in visual quality for most sequences, and runs 10 to 1000 times faster than state-of-the-art methods. The code is made publicly available at https://github.com/makedede/MEFNet.
科研通智能强力驱动
Strongly Powered by AbleSci AI