Reading Digital Numbers of Water Meter with Deep Learning Based Object Detector

计算机科学 自动抄表 阅读(过程) 探测器 对象(语法) 人工智能 计算机图形学(图像) 计算机视觉 计算机硬件 操作系统 电信 物理 天文 政治学 法学 无线
作者
Shirong Liao,Pan Zhou,Lianglin Wang,Songzhi Su
出处
期刊:Lecture Notes in Computer Science 卷期号:: 38-49 被引量:8
标识
DOI:10.1007/978-3-030-31654-9_4
摘要

Automatically reading water meter is a classical OCR problem, typical method includes four major components: region of interests (ROIs) detection, skew correction of bounding boxes, single digital character segmentation, and digital classification. Disadvantage of the traditional method is that the pipeline is too complex and coupled to the accuracy of the final recognition result. Deep learning based object detection has achieved promising results on many computer vision tasks. As one of the representatives of the deep learning object detection framework, YOLOv3 perform detection task quickly and accurately. Inspired by this, we formulate the water meter reading problem as a detection problem, which is a true end-to-end solution. In order to attack the half-character problem of water meter, we proposed a heuristic rule to guarantee that there is only one bounding box in the vertical direction within a grid. Experimental results on our own built XMU-W-M dataset showed that the 0-error recognition rate reaches 96.67% and the 1-error recognition rate is up to 99.81%, which outperforms the traditional water meter recognition system in both time and precision. Both the code and dataset are available: https://github.com/sloan96/water-meter-recognition .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
千寻发布了新的文献求助10
3秒前
文润宇发布了新的文献求助10
6秒前
小雪完成签到,获得积分10
6秒前
依灵完成签到,获得积分10
6秒前
8秒前
8秒前
8秒前
11秒前
GRJ发布了新的文献求助10
14秒前
恪心完成签到,获得积分10
15秒前
彭于晏应助千寻采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得30
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
只争朝夕应助科研通管家采纳,获得30
16秒前
共享精神应助科研通管家采纳,获得10
17秒前
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
CipherSage应助科研通管家采纳,获得10
17秒前
寻道图强应助科研通管家采纳,获得30
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
李金玉发布了新的文献求助10
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
只争朝夕应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得30
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
18秒前
19秒前
打打应助文润宇采纳,获得10
19秒前
19秒前
YFL完成签到,获得积分10
21秒前
坦率灵槐发布了新的文献求助10
22秒前
Orange应助清脆雪糕采纳,获得10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563503
求助须知:如何正确求助?哪些是违规求助? 4648366
关于积分的说明 14684601
捐赠科研通 4590315
什么是DOI,文献DOI怎么找? 2518435
邀请新用户注册赠送积分活动 1491125
关于科研通互助平台的介绍 1462426