数学
同余关系
互质整数
同余(几何)
模
素数(序理论)
组合数学
谐波
算术
纯数学
几何学
量子力学
物理
作者
Megan McCoy,Kevin Thielen,Liuquan Wang,Jianqiang Zhao
标识
DOI:10.1142/s1793042117500075
摘要
In recent years, the congruence $$ \sum_{\substack{i+j+k=p\\ i,j,k>0}} \frac1{ijk} \equiv -2 B_{p-3} \pmod{p}, $$ first discovered by the last author have been generalized by either increasing the number of indices and considering the corresponding supercongruences, or by considering the alternating version of multiple harmonic sums. In this paper, we prove a family of similar supercongruences modulo prime powers $p^r$ with the indexes summing up to $mp^r$ where $m$ is coprime to $p$, where all the indexes are also coprime to $p$.
科研通智能强力驱动
Strongly Powered by AbleSci AI