Metastable Chloride Solid Electrolyte with High Formability for Rechargeable All-Solid-State Lithium Metal Batteries

快离子导体 材料科学 离子电导率 电解质 锂(药物) 固溶体 离子键合 电导率 离子 化学工程 化学 冶金 物理化学 电极 医学 工程类 内分泌学 有机化学
作者
Naoto Tanibata,Shuta Takimoto,K. Nakano,Hayami Takeda,Masanobu Nakayama,Hirofumi Sumi
出处
期刊:ACS materials letters [American Chemical Society]
卷期号:2 (8): 880-886 被引量:54
标识
DOI:10.1021/acsmaterialslett.0c00127
摘要

Dense solid electrolytes in all-solid-state Li batteries are expected to suppress Li dendrite phenomena that prevent the application of high-energy-density Li metal electrodes. However, voids and cracks in sintered electrolytes still permit short-circuiting due to Li dendrites. This study aimed to investigate solid electrolytes with high formability in which green compacts can prevent Li dendrites. Li+ ion migration energies, bulk moduli, and energies above the hull were comprehensively investigated using first-principles and classical force field calculations as the indicators for ionic conductivity, formability, and thermodynamic stability. The 231 compounds containing Li and Cl listed in the Materials Project database were studied due to their high polarizability and weak Coulombic interaction with Li+ ions. Among them, monoclinic LiAlCl4 (LAC, S.G.: P121/c1) was focused on, owing to its low values of all three indicators. A mechanochemical synthesis was attempted to prepare the metastable phase, where Li ions occupy the interstitial sites, not just the original sites, because the computation for the migration energy suggested conductive pathways between the original Li sites. XRD and 7Li-MAS NMR measurements indicated that the mechanochemically synthesized LAC possessed a monoclinic host structure, while 2.5% Li occupied interstitial tetrahedral sites. Impedance measurements showed that the LAC green compacts exhibited an ionic conductivity of 2.1 × 10–5 S cm–1, 20 times higher than the conventional solid-state synthesized LAC at room temperature. The conductivity was more than one order of magnitude higher than that of garnet-type Li6.6La3Zr1.6Ta0.4O12 (LLZT), which has been attractive for the application of the sintered body for Li metal electrodes. The SEM observations and distribution of relaxation times analysis indicated that dense LAC green compacts with large necking between the particles contributed minimal grain-boundary resistance (7.5%) to the total resistance, while the LLZT green compacts contributed almost completely (99%). Li metal symmetric cells using the LAC pellet showed good cycle performance without short-circuiting and an overvoltage increase for 70 cycles at a current density of 0.1 mA cm–2, while short circuiting occurred at the 1st cycle in the LLZT cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
与我常在完成签到,获得积分10
刚刚
烟花应助luciues采纳,获得10
3秒前
海绵宝宝完成签到,获得积分10
5秒前
小美完成签到 ,获得积分10
9秒前
hh完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
seven发布了新的文献求助10
12秒前
12秒前
15秒前
clown完成签到,获得积分10
15秒前
xiaohu完成签到,获得积分10
15秒前
兴奋寄容发布了新的文献求助10
15秒前
11632发布了新的文献求助10
17秒前
韩尚宁完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
简单如容发布了新的文献求助10
20秒前
Dimple完成签到,获得积分10
20秒前
星辰大海应助初晨采纳,获得10
21秒前
Noah完成签到 ,获得积分10
22秒前
无算浮白发布了新的文献求助10
22秒前
韩尚宁发布了新的文献求助40
24秒前
24秒前
NexusExplorer应助贪玩的霸采纳,获得10
24秒前
传奇3应助JohniferCheong采纳,获得10
25秒前
善良天抒发布了新的文献求助10
25秒前
Owen应助xinbowey采纳,获得10
26秒前
27秒前
29秒前
SPRING完成签到,获得积分10
31秒前
充电宝应助niu采纳,获得10
32秒前
33秒前
sjc发布了新的文献求助10
33秒前
chinnker完成签到,获得积分10
34秒前
11632完成签到 ,获得积分20
34秒前
慕冰蝶完成签到,获得积分20
35秒前
ephore完成签到,获得积分0
36秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163322
求助须知:如何正确求助?哪些是违规求助? 2814193
关于积分的说明 7903619
捐赠科研通 2473746
什么是DOI,文献DOI怎么找? 1317036
科研通“疑难数据库(出版商)”最低求助积分说明 631614
版权声明 602187