Comprehensive Middle-Down Mass Spectrometry Characterization of an Antibody–Drug Conjugate by Combined Ion Activation Methods

化学 串联质谱法 质谱法 抗体-药物偶联物 电子转移离解 结合 碎片(计算) 互补决定区 色谱法 抗体 单克隆抗体 组合化学 肽序列 生物化学 计算机科学 数学 数学分析 免疫学 操作系统 基因 生物
作者
Eleanor Watts,Jon D. Williams,Laura J. Miesbauer,Milan Bruncko,Jennifer S. Brodbelt
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:92 (14): 9790-9798 被引量:22
标识
DOI:10.1021/acs.analchem.0c01232
摘要

Antibody–drug conjugates (ADCs) are an increasingly prevalent drug class utilized as chemotherapeutic agents. The complexity of ADCs, including their large size, array of drug conjugation sites, and heterogeneous compositions containing from zero to several payloads, demands the use of advanced analytical characterization methods. Tandem mass spectrometry (MS/MS) strategies, including a variety of bottom-up, middle-down, and even top-down approaches, frequently applied for the analysis of antibodies are increasingly being adapted for antibody–drug conjugates. Middle-down tandem mass spectrometry, often focusing on the analysis of ∼25 kDa protein subunits, offers the potential for complete sequence confirmation as well as the identification of multiple conjugation states. While middle-down studies have been extensively developed for monoclonal antibodies, middle-down characterization of ADCs has been limited by the high complexity of the drug molecules. This study seeks to bridge the gap by utilizing a combination of 193 nm ultraviolet photodissociation (UVPD), electron-transfer dissociation (ETD), and electron-transfer/higher-energy collision dissociation (EThcD). The compilation of these MS/MS methods leads to high sequence coverages of 60–80% for each subunit of the ADC. Moreover, the combined fragmentation patterns provide sufficient information to allow confirmation of both the sequence of the complementarity-determining regions and the payload conjugation sites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助桑姊采纳,获得10
1秒前
斯文败类应助Lvj采纳,获得10
1秒前
SYLH应助YHL采纳,获得10
1秒前
ranqi完成签到,获得积分10
1秒前
1秒前
2秒前
17808352679发布了新的文献求助10
2秒前
易生完成签到,获得积分10
3秒前
细腻曼冬完成签到 ,获得积分10
3秒前
3秒前
3秒前
9209完成签到 ,获得积分10
3秒前
4秒前
ranqi发布了新的文献求助10
4秒前
云落完成签到,获得积分10
4秒前
田様应助杨枝甘露樱桃采纳,获得10
4秒前
冲浪男孩226完成签到 ,获得积分10
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
现实的曼荷关注了科研通微信公众号
6秒前
6秒前
邓佳鑫Alan应助uniphoton采纳,获得10
6秒前
6秒前
英姑应助cc采纳,获得10
6秒前
MM完成签到,获得积分10
7秒前
lyn发布了新的文献求助10
7秒前
koipp发布了新的文献求助10
7秒前
Rebecca发布了新的文献求助10
8秒前
pinging应助愉快冰淇淋采纳,获得10
8秒前
不厌发布了新的文献求助100
8秒前
9秒前
cherry发布了新的文献求助10
9秒前
CodeCraft应助马洛采纳,获得10
10秒前
十七完成签到,获得积分10
10秒前
11秒前
兴奋汽车完成签到,获得积分10
11秒前
学就完了完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762