亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of five types of forensic body fluids based on stepwise discriminant analysis

体液 法医鉴定 线性判别分析 鉴定(生物学) 精液 唾液 人工智能 计算生物学 计算机科学 内科学 医学 生物 男科 遗传学 植物
作者
Hongqing He,Ning Han,Chengjie Ji,Yixia Zhao,Sheng Hu,Qinglan Kong,Jian Ye,Anquan Ji,Qifan Sun
出处
期刊:Forensic Science International-genetics [Elsevier BV]
卷期号:48: 102337-102337 被引量:20
标识
DOI:10.1016/j.fsigen.2020.102337
摘要

Peripheral blood, menstrual blood, semen, saliva and vaginal secretions are the five most common body fluids found at crime scenes, and the identification of these five body fluids is of great significance to the reconstruction of a crime scene and resolution of the case. However, accurate identification of these five body fluids is still a challenge. To address this problem, a mathematical model for differentiating five types of forensic body fluids based on the differential expression characteristics of multiple miRNAs in five body fluids (peripheral blood, menstrual blood, semen, saliva and vaginal secretions) was developed. A total of 350 forensic body fluids (70 of each type) were collected and tested, and relative expression of 10 miRNAs (miR-451a, miR-205−5p, miR-203−3p, miR-214−3p, miR-144−3p, miR-144−5p, miR-654−5p, miR-888−5p, miR-891a-5p, miR-124a-3p) in all samples was detected by SYBR Green real-time qPCR. Three hundred samples (60 samples of each body fluid) were used as the training set to screen meaningful identification markers by stepwise discriminant analysis, and a discriminant function was established. Fifty samples (10 samples of each body fluid) were used as a validation set to examine the accuracy of the model, and 25 samples (the types of samples were unknown to the experimenter) were used for a blind test. Except for miR-144−3p, the other miRNAs were selected to construct discriminant analysis models. The self-validation accuracy of the model was 99.7 %, cross-validation accuracy was 99.3 %, accuracy of the identification validation set was 100 %, and accuracy of the blind test result was 100 %. This study provides a reliable and accurate identification strategy for five common body fluids (peripheral blood, menstrual blood, semen, saliva, and vaginal secretions) in forensic medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VERITAS完成签到,获得积分10
4秒前
陈艺平完成签到,获得积分10
6秒前
8秒前
8秒前
9秒前
今后应助执着南琴采纳,获得10
10秒前
稚久发布了新的文献求助10
14秒前
风趣煎蛋发布了新的文献求助10
15秒前
18秒前
高木同学完成签到,获得积分10
19秒前
执着南琴完成签到,获得积分20
19秒前
啵啵哦关注了科研通微信公众号
22秒前
执着南琴发布了新的文献求助10
23秒前
余念安完成签到 ,获得积分10
27秒前
45秒前
45秒前
VERITAS发布了新的文献求助10
49秒前
54秒前
nature完成签到 ,获得积分10
1分钟前
华仔应助VERITAS采纳,获得10
1分钟前
天天好心覃完成签到 ,获得积分10
1分钟前
科目三应助xuezha采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
科研通AI2S应助玄之又玄采纳,获得10
2分钟前
风趣煎蛋发布了新的文献求助10
2分钟前
天天快乐应助MOD采纳,获得10
2分钟前
2分钟前
feifei发布了新的文献求助10
2分钟前
2分钟前
HYQ完成签到 ,获得积分10
2分钟前
3分钟前
欣喜的人龙完成签到 ,获得积分10
3分钟前
VERITAS发布了新的文献求助10
3分钟前
Foxjker完成签到 ,获得积分10
3分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965659
求助须知:如何正确求助?哪些是违规求助? 3510910
关于积分的说明 11155555
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214