Identification of five types of forensic body fluids based on stepwise discriminant analysis

体液 法医鉴定 线性判别分析 鉴定(生物学) 精液 唾液 人工智能 计算生物学 计算机科学 内科学 医学 生物 男科 遗传学 植物
作者
Hongqing He,Ning Han,Chengjie Ji,Yixia Zhao,Sheng Hu,Qinglan Kong,Jian Ye,Anquan Ji,Qifan Sun
出处
期刊:Forensic Science International-genetics [Elsevier]
卷期号:48: 102337-102337 被引量:20
标识
DOI:10.1016/j.fsigen.2020.102337
摘要

Peripheral blood, menstrual blood, semen, saliva and vaginal secretions are the five most common body fluids found at crime scenes, and the identification of these five body fluids is of great significance to the reconstruction of a crime scene and resolution of the case. However, accurate identification of these five body fluids is still a challenge. To address this problem, a mathematical model for differentiating five types of forensic body fluids based on the differential expression characteristics of multiple miRNAs in five body fluids (peripheral blood, menstrual blood, semen, saliva and vaginal secretions) was developed. A total of 350 forensic body fluids (70 of each type) were collected and tested, and relative expression of 10 miRNAs (miR-451a, miR-205−5p, miR-203−3p, miR-214−3p, miR-144−3p, miR-144−5p, miR-654−5p, miR-888−5p, miR-891a-5p, miR-124a-3p) in all samples was detected by SYBR Green real-time qPCR. Three hundred samples (60 samples of each body fluid) were used as the training set to screen meaningful identification markers by stepwise discriminant analysis, and a discriminant function was established. Fifty samples (10 samples of each body fluid) were used as a validation set to examine the accuracy of the model, and 25 samples (the types of samples were unknown to the experimenter) were used for a blind test. Except for miR-144−3p, the other miRNAs were selected to construct discriminant analysis models. The self-validation accuracy of the model was 99.7 %, cross-validation accuracy was 99.3 %, accuracy of the identification validation set was 100 %, and accuracy of the blind test result was 100 %. This study provides a reliable and accurate identification strategy for five common body fluids (peripheral blood, menstrual blood, semen, saliva, and vaginal secretions) in forensic medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ssss发布了新的文献求助10
1秒前
英姑应助罐子采纳,获得10
3秒前
完美世界应助Lin采纳,获得10
3秒前
5秒前
5秒前
weihe发布了新的文献求助20
5秒前
6秒前
一一完成签到,获得积分20
7秒前
7秒前
8秒前
9秒前
10秒前
无花果应助gyl采纳,获得10
11秒前
anjun发布了新的文献求助10
12秒前
12秒前
ok俺是你的魂完成签到,获得积分10
13秒前
zmm发布了新的文献求助10
13秒前
情怀应助刘师傅开饭了采纳,获得10
14秒前
科研通AI2S应助研友_8o5V2n采纳,获得10
16秒前
16秒前
17秒前
xzy998发布了新的文献求助10
17秒前
Roger发布了新的文献求助10
18秒前
Lin发布了新的文献求助10
22秒前
anjun完成签到,获得积分0
22秒前
medxyy完成签到,获得积分10
24秒前
24秒前
Daisy发布了新的文献求助10
25秒前
一一发布了新的文献求助10
25秒前
27秒前
28秒前
一杯茶发布了新的文献求助10
28秒前
罐子完成签到,获得积分10
29秒前
29秒前
闫伊森完成签到,获得积分10
30秒前
31秒前
罐子发布了新的文献求助10
35秒前
聪明的鹤发布了新的文献求助50
35秒前
烹全鱼宴完成签到,获得积分10
36秒前
会武功的阿吉完成签到,获得积分10
37秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171184
求助须知:如何正确求助?哪些是违规求助? 2822083
关于积分的说明 7937925
捐赠科研通 2482524
什么是DOI,文献DOI怎么找? 1322654
科研通“疑难数据库(出版商)”最低求助积分说明 633669
版权声明 602627