Parameter Identification of a Power Loss Model for Vehicle Transmissions Based on Sensitivity Analysis

风阻 灵敏度(控制系统) 功率(物理) 动力传动系统 功率损耗 传输损耗 动力传输 汽车工程 搅动 控制理论(社会学) 计算机科学 传输(电信) 工程类 扭矩 电子工程 电压 电气工程 机械工程 物理 劳动经济学 人工智能 热力学 经济 控制(管理) 电信 量子力学
作者
Zhihong Liu,Stephan Rinderknecht
出处
期刊:SAE International journal of advances and current practices in mobility [SAE International]
卷期号:3 (1): 590-597
标识
DOI:10.4271/2020-01-2244
摘要

As the transmission design directly impacts drive unite operation and power flow to the driveline, the transmission power loss is a critical target in the drivetrain development. The demand of more precise and more efficient power loss prediction has therefore increased significantly, which highlights the need of new methodologies in order to optimize the power loss model for vehicle transmissions. The possible power losses that exist in the power flow path, are gear mesh losses, gear churning losses, gear windage losses, bearing losses, synchronizer losses and sealing losses. Thanks to the decades of research, analytical models are available for the prediction of these component losses, which could deliver power loss distributions and overall efficiency maps of complex transmissions. The aim of this paper is to introduce a methodology to improve the accuracy of a chosen power loss model on a system level. A detailed power loss prediction for a two-speed transmission in an electric vehicle has been performed. The simulated overall power losses and the available experimental results match well. However, since many assumptions are made in the analytical modelling process, there are still deviations between the predicted and the measured results. In order to reduce the deviations, all uncertain parameters are firstly analyzed based on the parameter sensitivity analysis method FAST that allows determining the influential uncertain parameters. The sensitivities of those influential parameters are locally defined at all operating regions, by which the sensitive operating areas of all influential uncertain parameters to the overall power losses could be defined. The identification of these parameters at their sensitive regions prevents the unnecessary interference with other uncertain parameters at the identification process. With the help of identified parameters, a better proximity between the simulated and measured results is achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阔达翠彤完成签到,获得积分10
1秒前
WZH完成签到 ,获得积分10
1秒前
2秒前
CipherSage应助zhao采纳,获得10
3秒前
3秒前
传奇3应助丁牛青采纳,获得10
5秒前
5秒前
喜宝完成签到 ,获得积分10
5秒前
悦耳易烟发布了新的文献求助10
10秒前
10秒前
zjw完成签到,获得积分10
12秒前
13秒前
sqz发布了新的文献求助10
14秒前
艺涵完成签到,获得积分10
14秒前
腼腆的洪纲完成签到,获得积分10
15秒前
及禾应助李田田采纳,获得10
15秒前
wanci应助微微采纳,获得10
15秒前
16秒前
17秒前
你今天学了多少完成签到 ,获得积分10
18秒前
19秒前
20秒前
林昀完成签到 ,获得积分10
20秒前
冷静的缘分完成签到 ,获得积分10
20秒前
碧蓝问玉发布了新的文献求助10
21秒前
sqz完成签到,获得积分10
21秒前
22秒前
22秒前
烟花应助怕孤单的绿柏采纳,获得10
22秒前
Benzhdw完成签到,获得积分10
22秒前
淡淡夕阳发布了新的文献求助10
23秒前
23秒前
GT发布了新的文献求助10
23秒前
念姬发布了新的文献求助10
25秒前
keyaner完成签到,获得积分10
26秒前
睡到自然醒完成签到 ,获得积分10
28秒前
minever白完成签到,获得积分10
28秒前
沉默的鱼人完成签到 ,获得积分10
29秒前
黄鲁婧发布了新的文献求助10
30秒前
大个应助二三采纳,获得10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966147
求助须知:如何正确求助?哪些是违规求助? 3511532
关于积分的说明 11158765
捐赠科研通 3246148
什么是DOI,文献DOI怎么找? 1793309
邀请新用户注册赠送积分活动 874295
科研通“疑难数据库(出版商)”最低求助积分说明 804343