Parameter Identification of a Power Loss Model for Vehicle Transmissions Based on Sensitivity Analysis

风阻 灵敏度(控制系统) 功率(物理) 动力传动系统 功率损耗 传输损耗 动力传输 汽车工程 搅动 控制理论(社会学) 计算机科学 传输(电信) 工程类 扭矩 电子工程 电压 电气工程 机械工程 物理 劳动经济学 人工智能 热力学 经济 控制(管理) 电信 量子力学
作者
Zhihong Liu,Stephan Rinderknecht
出处
期刊:SAE International journal of advances and current practices in mobility [SAE International]
卷期号:3 (1): 590-597
标识
DOI:10.4271/2020-01-2244
摘要

As the transmission design directly impacts drive unite operation and power flow to the driveline, the transmission power loss is a critical target in the drivetrain development. The demand of more precise and more efficient power loss prediction has therefore increased significantly, which highlights the need of new methodologies in order to optimize the power loss model for vehicle transmissions. The possible power losses that exist in the power flow path, are gear mesh losses, gear churning losses, gear windage losses, bearing losses, synchronizer losses and sealing losses. Thanks to the decades of research, analytical models are available for the prediction of these component losses, which could deliver power loss distributions and overall efficiency maps of complex transmissions. The aim of this paper is to introduce a methodology to improve the accuracy of a chosen power loss model on a system level. A detailed power loss prediction for a two-speed transmission in an electric vehicle has been performed. The simulated overall power losses and the available experimental results match well. However, since many assumptions are made in the analytical modelling process, there are still deviations between the predicted and the measured results. In order to reduce the deviations, all uncertain parameters are firstly analyzed based on the parameter sensitivity analysis method FAST that allows determining the influential uncertain parameters. The sensitivities of those influential parameters are locally defined at all operating regions, by which the sensitive operating areas of all influential uncertain parameters to the overall power losses could be defined. The identification of these parameters at their sensitive regions prevents the unnecessary interference with other uncertain parameters at the identification process. With the help of identified parameters, a better proximity between the simulated and measured results is achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LYM发布了新的文献求助10
1秒前
纸上彩虹完成签到 ,获得积分10
1秒前
调研昵称发布了新的文献求助10
1秒前
1秒前
rosy发布了新的文献求助10
1秒前
Ming完成签到,获得积分10
1秒前
2秒前
田様应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得30
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
2秒前
prosperp应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
Enso完成签到 ,获得积分10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
难过的翎应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
中级中级发布了新的文献求助10
3秒前
大个应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
丸子完成签到,获得积分10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
难过的翎应助科研通管家采纳,获得10
3秒前
飞快的语蕊完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
小蘑菇应助xqwwqx采纳,获得10
4秒前
情怀应助沙111采纳,获得10
4秒前
shelly0621发布了新的文献求助10
5秒前
顾暖完成签到,获得积分10
5秒前
JamesPei应助Dddd采纳,获得10
5秒前
kkkkkw完成签到,获得积分10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678