已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Parameter Identification of a Power Loss Model for Vehicle Transmissions Based on Sensitivity Analysis

风阻 灵敏度(控制系统) 功率(物理) 动力传动系统 功率损耗 传输损耗 动力传输 汽车工程 搅动 控制理论(社会学) 计算机科学 传输(电信) 工程类 扭矩 电子工程 电压 电气工程 机械工程 物理 劳动经济学 人工智能 热力学 经济 控制(管理) 电信 量子力学
作者
Zhihong Liu,Stephan Rinderknecht
出处
期刊:SAE International journal of advances and current practices in mobility [SAE International]
卷期号:3 (1): 590-597
标识
DOI:10.4271/2020-01-2244
摘要

As the transmission design directly impacts drive unite operation and power flow to the driveline, the transmission power loss is a critical target in the drivetrain development. The demand of more precise and more efficient power loss prediction has therefore increased significantly, which highlights the need of new methodologies in order to optimize the power loss model for vehicle transmissions. The possible power losses that exist in the power flow path, are gear mesh losses, gear churning losses, gear windage losses, bearing losses, synchronizer losses and sealing losses. Thanks to the decades of research, analytical models are available for the prediction of these component losses, which could deliver power loss distributions and overall efficiency maps of complex transmissions. The aim of this paper is to introduce a methodology to improve the accuracy of a chosen power loss model on a system level. A detailed power loss prediction for a two-speed transmission in an electric vehicle has been performed. The simulated overall power losses and the available experimental results match well. However, since many assumptions are made in the analytical modelling process, there are still deviations between the predicted and the measured results. In order to reduce the deviations, all uncertain parameters are firstly analyzed based on the parameter sensitivity analysis method FAST that allows determining the influential uncertain parameters. The sensitivities of those influential parameters are locally defined at all operating regions, by which the sensitive operating areas of all influential uncertain parameters to the overall power losses could be defined. The identification of these parameters at their sensitive regions prevents the unnecessary interference with other uncertain parameters at the identification process. With the help of identified parameters, a better proximity between the simulated and measured results is achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
田様应助yushe采纳,获得10
2秒前
情怀应助谨慎蜗牛采纳,获得10
2秒前
lvzhechen发布了新的文献求助10
4秒前
4秒前
BoBo发布了新的文献求助10
4秒前
GR发布了新的文献求助10
6秒前
10秒前
霸气的依瑶完成签到,获得积分10
10秒前
青瓜大薯完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
13秒前
13秒前
Brook1985完成签到,获得积分10
15秒前
无聊人完成签到,获得积分10
15秒前
16秒前
16秒前
飞翔的梦发布了新的文献求助20
17秒前
17秒前
时间如水发布了新的文献求助10
19秒前
21发布了新的文献求助10
19秒前
20秒前
20秒前
daytoy完成签到,获得积分10
20秒前
wentong完成签到,获得积分10
21秒前
hongxuezhi发布了新的文献求助10
23秒前
追寻麦片完成签到 ,获得积分10
23秒前
24秒前
大个应助年轻的星月采纳,获得10
24秒前
赵浩杰完成签到,获得积分10
25秒前
酷波er应助小不溜采纳,获得10
27秒前
活力迎梦发布了新的文献求助10
28秒前
科研通AI6应助发文章12138采纳,获得10
31秒前
32秒前
风为裳完成签到,获得积分10
32秒前
年轻的星月完成签到,获得积分10
33秒前
打打应助无解采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469690
求助须知:如何正确求助?哪些是违规求助? 4572675
关于积分的说明 14336868
捐赠科研通 4499634
什么是DOI,文献DOI怎么找? 2465126
邀请新用户注册赠送积分活动 1453693
关于科研通互助平台的介绍 1428209