选择性
溴化铵
聚合物
卟啉
环加成
催化作用
化学工程
溴化物
水溶液
化学
有机化学
生物化学
肺表面活性物质
工程类
作者
Yaju Chen,Qinggang Ren,Zeng XiaoJing,Leiming Tao,Xiantai Zhou,Hongbing Ji
标识
DOI:10.1016/j.ces.2020.116380
摘要
Multifunctionalization of porous organic polymers (POPs) for working in concert on a substrate is now a research topic in CO2 catalysis, yet it remains challenging. This work describes a pre- and post-synthetic strategy to design metalloporphyrin-based azo-hierarchical porous ionic polymers (ZnTPP/QA-azo-PiPs), which were synthesized based on diazo-coupling reaction of tetra(4-aminophenyl) porphyrin zinc with tri/diphenols in aqueous solution under mild conditions, followed by etherification with quaternary ammonium bromide. This synthetic approach endows ZnTPP/QA-azo-PiP1 with features of an improved surface area (181 m2/g), hierarchical porosity, and high-density active sites. ZnTPP/QA-azo-PiP1 presented a noteworthy CO2 uptake of 1.77 mmol/g at 273 K and 1.0 bar and good CO2/N2 selectivity of 44.8. As expected, ZnTPP/QA-azo-PiP1 showed quantitative conversion and selectivity for a range of epoxides under mild conditions (1.0 MPa, 80 °C, 12 h) in the CO2 cycloaddition reaction. ZnTPP/QA-azo-PiP1 could been recycled easily and retained complete retention of activity and selectivity for over 7 cycles. Moreover, with efficacious activity in conversion of diluted CO2 (15% CO2 in 85% N2, v/v), ZnTPP/QA-azo-PiP1 could smoothly catalyze CO2-involved reaction to produce oxazolidinones and N-formylated amines under mild conditions. This work promotes sustainable synthesis of advanced multifunctional POPs and gives great promise for their application in synthetic transformations of CO2.
科研通智能强力驱动
Strongly Powered by AbleSci AI