清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Heterogeneous Hypergraph Variational Autoencoder for Link Prediction

自编码 超图 成对比较 计算机科学 语义学(计算机科学) 理论计算机科学 异构网络 人工智能 嵌入 链接(几何体) 数据挖掘 机器学习 人工神经网络 数学 计算机网络 离散数学 无线网络 电信 程序设计语言 无线
作者
Haoyi Fan,Fengbin Zhang,Yuxuan Wei,Zuoyong Li,Changqing Zou,Yue Gao,Qionghai Dai
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-1 被引量:63
标识
DOI:10.1109/tpami.2021.3059313
摘要

Link prediction aims at inferring missing links or predicting future ones based on the currently observed network. This topic is important for many applications such as social media, bioinformatics and recommendation systems. Most existing methods focus on homogeneous settings and consider only low-order pairwise relations while ignoring either the heterogeneity or high-order complex relations among different types of nodes, which tends to lead to a sub-optimal embedding result. This paper presents a method named Heterogeneous Hypergraph Variational Autoencoder (HeteHG-VAE) for link prediction in heterogeneous information networks (HINs). It first maps a conventional HIN to a heterogeneous hypergraph with a certain kind of semantics to capture both the high-order semantics and complex relations among nodes, while preserving the low-order pairwise topology information of the original HIN. Then, deep latent representations of nodes and hyperedges are learned by a Bayesian deep generative framework from the heterogeneous hypergraph in an unsupervised manner. Moreover, a hyperedge attention module is designed to learn the importance of different types of nodes in each hyperedge. The major merit of HeteHG-VAE lies in its ability of modeling multi-level relations in heterogeneous settings. Extensive experiments on real-world datasets demonstrate the effectiveness and efficiency of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英喆完成签到 ,获得积分10
25秒前
36秒前
41秒前
42秒前
淡然的妙芙应助666采纳,获得10
45秒前
daomaihu完成签到,获得积分10
49秒前
1437594843完成签到 ,获得积分10
53秒前
浮游应助紫熊采纳,获得10
1分钟前
1分钟前
CrysLantZ完成签到,获得积分10
1分钟前
紫熊完成签到,获得积分10
1分钟前
1分钟前
Sunny发布了新的文献求助10
1分钟前
turtle完成签到 ,获得积分10
1分钟前
Sunny完成签到,获得积分10
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
2分钟前
John完成签到,获得积分10
2分钟前
甜菜完成签到,获得积分10
3分钟前
魁梧的觅松完成签到 ,获得积分10
4分钟前
qinghe完成签到 ,获得积分10
4分钟前
共享精神应助娲皇后裔采纳,获得30
4分钟前
丘比特应助憩在云端采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
葱饼完成签到 ,获得积分10
4分钟前
憩在云端发布了新的文献求助10
4分钟前
吴静完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
digger2023完成签到 ,获得积分10
5分钟前
6分钟前
senpl发布了新的文献求助10
6分钟前
张wx_100完成签到,获得积分10
6分钟前
共享精神应助科研通管家采纳,获得10
6分钟前
ww完成签到,获得积分10
6分钟前
李佳倩完成签到 ,获得积分10
7分钟前
赵坤煊完成签到 ,获得积分10
7分钟前
科研通AI6应助hEbuy采纳,获得10
8分钟前
大胆的碧菡完成签到,获得积分10
8分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5105773
求助须知:如何正确求助?哪些是违规求助? 4315494
关于积分的说明 13444508
捐赠科研通 4144203
什么是DOI,文献DOI怎么找? 2270981
邀请新用户注册赠送积分活动 1273462
关于科研通互助平台的介绍 1210735