MMCNN: A Multi-branch Multi-scale Convolutional Neural Network for Motor Imagery Classification

计算机科学 卷积神经网络 卷积(计算机科学) 脑-机接口 模式识别(心理学) 人工智能 运动表象 比例(比率) 脑电图 噪音(视频) 语音识别 人工神经网络 图像(数学) 精神科 物理 心理学 量子力学
作者
Ziyu Jia,Youfang Lin,Jing Wang,Kaixin Yang,Tianhang Liu,Zhang Xinwang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 736-751 被引量:44
标识
DOI:10.1007/978-3-030-67664-3_44
摘要

Electroencephalography (EEG) based motor imagery (MI) is one of the promising Brain–computer interface (BCI) paradigms enable humans to communicate with the outside world based solely on brain intentions. Although convolutional neural networks have been gradually applied to MI classification task and gained high performance, the following problems still exist to make effective decoding of raw EEG signals challenging: 1) EEG signals are non-linear, non-stationary, and low signal-noise ratio. 2) Most existing end-to-end MI models utilize single scale convolution which limits the result of classification because the best convolution scale varies with different subject (called subject difference). In addition, even for the same subject, the best convolution scale also differs from time to time (called time difference). In this paper, we propose a novel end-to-end model, named Multi-branch Multi-scale Convolutional Neural Network (MMCNN), for motor imagery classification. The MMCNN model effectively decodes raw EEG signals without any pre-processing including filtering. Meanwhile, the multi-branch multi-scale convolution structure successfully addresses the problems of subject difference and time difference based on parallel processing. In addition, multi-scale convolution can realize the characterization of information in different frequency bands, thereby effectively solving the problem that the best convolution scale is difficult to determine. Experiments on two public BCI competition datasets demonstrate that the proposed MMCNN model outperforms the state-of-the-art models. The implementation code is made publicly available https://github.com/jingwang2020/ECML-PKDD_MMCNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
单薄新烟发布了新的文献求助10
1秒前
1秒前
桐桐应助小王采纳,获得10
1秒前
2秒前
2秒前
2秒前
楚岸发布了新的文献求助10
4秒前
阿强哥20241101完成签到,获得积分10
4秒前
TQY完成签到,获得积分10
5秒前
Khr1stINK发布了新的文献求助10
5秒前
宁静致远完成签到,获得积分10
5秒前
mxbyccbaby完成签到,获得积分10
6秒前
6秒前
楼寒天发布了新的文献求助30
6秒前
6秒前
jdmeme完成签到 ,获得积分10
7秒前
DVD完成签到 ,获得积分10
8秒前
学术嫪毐完成签到,获得积分10
8秒前
Xyyy发布了新的文献求助10
9秒前
uu完成签到,获得积分10
9秒前
小蘑菇应助赵赵赵采纳,获得10
9秒前
阿兹卡班狂徒完成签到 ,获得积分10
9秒前
9秒前
yuefeng发布了新的文献求助10
10秒前
澳臻白发布了新的文献求助10
10秒前
11秒前
刘大妮发布了新的文献求助10
11秒前
11秒前
王欧尼发布了新的文献求助10
12秒前
sooya关注了科研通微信公众号
12秒前
13秒前
13秒前
青木蓝发布了新的文献求助10
15秒前
852应助gaga采纳,获得10
15秒前
16秒前
16秒前
游尘发布了新的文献求助10
17秒前
bkagyin应助zhaowenxian采纳,获得10
17秒前
水电费第三方完成签到,获得积分20
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794