MMCNN: A Multi-branch Multi-scale Convolutional Neural Network for Motor Imagery Classification

计算机科学 卷积神经网络 卷积(计算机科学) 脑-机接口 模式识别(心理学) 人工智能 运动表象 比例(比率) 脑电图 噪音(视频) 语音识别 人工神经网络 图像(数学) 精神科 物理 心理学 量子力学
作者
Ziyu Jia,Youfang Lin,Jing Wang,Kaixin Yang,Tianhang Liu,Zhang Xinwang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 736-751 被引量:44
标识
DOI:10.1007/978-3-030-67664-3_44
摘要

Electroencephalography (EEG) based motor imagery (MI) is one of the promising Brain–computer interface (BCI) paradigms enable humans to communicate with the outside world based solely on brain intentions. Although convolutional neural networks have been gradually applied to MI classification task and gained high performance, the following problems still exist to make effective decoding of raw EEG signals challenging: 1) EEG signals are non-linear, non-stationary, and low signal-noise ratio. 2) Most existing end-to-end MI models utilize single scale convolution which limits the result of classification because the best convolution scale varies with different subject (called subject difference). In addition, even for the same subject, the best convolution scale also differs from time to time (called time difference). In this paper, we propose a novel end-to-end model, named Multi-branch Multi-scale Convolutional Neural Network (MMCNN), for motor imagery classification. The MMCNN model effectively decodes raw EEG signals without any pre-processing including filtering. Meanwhile, the multi-branch multi-scale convolution structure successfully addresses the problems of subject difference and time difference based on parallel processing. In addition, multi-scale convolution can realize the characterization of information in different frequency bands, thereby effectively solving the problem that the best convolution scale is difficult to determine. Experiments on two public BCI competition datasets demonstrate that the proposed MMCNN model outperforms the state-of-the-art models. The implementation code is made publicly available https://github.com/jingwang2020/ECML-PKDD_MMCNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
氼氼完成签到,获得积分10
刚刚
刚刚
研友_85YNe8发布了新的文献求助20
刚刚
大模型应助自信冬瓜采纳,获得10
刚刚
ada完成签到 ,获得积分10
1秒前
灵巧人英发布了新的文献求助30
2秒前
liuying2完成签到,获得积分20
3秒前
bird0912完成签到,获得积分10
3秒前
诶呀完成签到 ,获得积分10
3秒前
李健的小迷弟应助张东磊采纳,获得10
3秒前
汉堡包应助顺利的尔烟采纳,获得10
4秒前
咕咕完成签到,获得积分10
4秒前
John完成签到 ,获得积分10
5秒前
想喝奶茶完成签到,获得积分10
7秒前
GealAntS完成签到,获得积分0
9秒前
orixero应助liuying2采纳,获得10
10秒前
11秒前
灵巧人英完成签到,获得积分10
11秒前
Lucas应助远山青如黛采纳,获得10
11秒前
13秒前
Aeastie完成签到,获得积分10
13秒前
13秒前
17秒前
laplatom完成签到,获得积分20
17秒前
17秒前
俞水云完成签到,获得积分10
18秒前
19秒前
19秒前
20秒前
20秒前
21秒前
22秒前
22秒前
sukiyaki完成签到,获得积分10
23秒前
smy发布了新的文献求助10
24秒前
常涑完成签到,获得积分10
24秒前
叶落知秋发布了新的文献求助10
25秒前
叶子发布了新的文献求助10
25秒前
SciGPT应助活泼的曼寒采纳,获得30
25秒前
25秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243096
求助须知:如何正确求助?哪些是违规求助? 2887115
关于积分的说明 8246636
捐赠科研通 2555713
什么是DOI,文献DOI怎么找? 1383818
科研通“疑难数据库(出版商)”最低求助积分说明 649757
邀请新用户注册赠送积分活动 625631