MMCNN: A Multi-branch Multi-scale Convolutional Neural Network for Motor Imagery Classification

计算机科学 卷积神经网络 卷积(计算机科学) 脑-机接口 模式识别(心理学) 人工智能 运动表象 比例(比率) 脑电图 噪音(视频) 解码方法 语音识别 人工神经网络 算法 图像(数学) 量子力学 精神科 物理 心理学
作者
Ziyu Jia,Youfang Lin,Jing Wang,Kaixin Yang,Tianhang Liu,Zhang Xinwang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 736-751 被引量:56
标识
DOI:10.1007/978-3-030-67664-3_44
摘要

Electroencephalography (EEG) based motor imagery (MI) is one of the promising Brain–computer interface (BCI) paradigms enable humans to communicate with the outside world based solely on brain intentions. Although convolutional neural networks have been gradually applied to MI classification task and gained high performance, the following problems still exist to make effective decoding of raw EEG signals challenging: 1) EEG signals are non-linear, non-stationary, and low signal-noise ratio. 2) Most existing end-to-end MI models utilize single scale convolution which limits the result of classification because the best convolution scale varies with different subject (called subject difference). In addition, even for the same subject, the best convolution scale also differs from time to time (called time difference). In this paper, we propose a novel end-to-end model, named Multi-branch Multi-scale Convolutional Neural Network (MMCNN), for motor imagery classification. The MMCNN model effectively decodes raw EEG signals without any pre-processing including filtering. Meanwhile, the multi-branch multi-scale convolution structure successfully addresses the problems of subject difference and time difference based on parallel processing. In addition, multi-scale convolution can realize the characterization of information in different frequency bands, thereby effectively solving the problem that the best convolution scale is difficult to determine. Experiments on two public BCI competition datasets demonstrate that the proposed MMCNN model outperforms the state-of-the-art models. The implementation code is made publicly available https://github.com/jingwang2020/ECML-PKDD_MMCNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Camellia发布了新的文献求助10
2秒前
lyt发布了新的文献求助10
3秒前
思源应助淡淡小土豆采纳,获得20
4秒前
甜甜亦丝完成签到,获得积分20
4秒前
111发布了新的文献求助10
4秒前
William发布了新的文献求助10
4秒前
SciGPT应助5High_0采纳,获得10
5秒前
7秒前
xxx完成签到,获得积分20
7秒前
超级煎饼完成签到 ,获得积分10
8秒前
桐桐应助Z鸡汤采纳,获得20
8秒前
9秒前
tony96完成签到,获得积分20
10秒前
10秒前
ASIS发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
xuxingjie发布了新的文献求助10
12秒前
大个应助Elaine采纳,获得10
13秒前
mango发布了新的文献求助10
14秒前
研友_nEWaD8完成签到,获得积分10
15秒前
zzz完成签到,获得积分10
15秒前
sweets完成签到,获得积分10
17秒前
LL发布了新的文献求助30
17秒前
17秒前
19秒前
www完成签到,获得积分10
20秒前
21秒前
21秒前
222发布了新的文献求助10
21秒前
黄量杰成发布了新的文献求助10
22秒前
23秒前
23秒前
sansan完成签到 ,获得积分10
24秒前
manru发布了新的文献求助10
24秒前
24秒前
25秒前
ASIS完成签到,获得积分10
25秒前
刘祥发布了新的文献求助10
25秒前
虚拟的柠檬完成签到,获得积分10
26秒前
27秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125100
求助须知:如何正确求助?哪些是违规求助? 4329107
关于积分的说明 13489886
捐赠科研通 4163829
什么是DOI,文献DOI怎么找? 2282591
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222983