亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Continuum Description of the Role of Negative Transference Numbers on Ion Motion in Polymer Electrolytes

电解质 离子电导率 离子 离子键合 化学物理 电导率 聚合物 快离子导体 极化(电化学) 电化学窗口 材料科学 化学 热力学 物理 电极 物理化学 有机化学 复合材料
作者
Hong-Keun Kim,Nitash P. Balsara,Venkat Srinivasan
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (5): 895-895
标识
DOI:10.1149/ma2020-025895mtgabs
摘要

All-solid-state rechargeable batteries are considered to be the key solution for the development of next-generation electrical energy storage. Solid polymer electrolytes (SPEs) have gained attention due to their electrochemical stability, non-flammability and processability.[1, 2] It is widely recognized that the ionic conductivity of polymer electrolytes is significantly lower than that of conventional liquid electrolytes. Recent studies have shown that salt diffusivity as well as cation transference number in polymer electrolytes is also lower than conventional electrolytes. [3-7] In fact, the cation transference number is negative in a narrow but important salt concentration window and it coincides with the peak in conductivity with respect to salt concentration. At a fundamental level, knowledge of these transport parameters can be used to characterize ion motion in SPEs. This knowledge is essential for predicting battery performance and may serve as a foundation for designing polymers with better performance. Recently, the experimental and theoretical approaches have been performed to better understand the transport of each ionic species. New experimental techniques such as electrophoretic NMR (eNMR) are emerging as powerful methods for directly measuring ion velocities in electrolytes under applied electric fields. [8-10] The standard approach to interpret these experiments is built on the assumption that electrolyte is dilute and thermodynamically ideal.[11] Timachova et al.[11] derived modified expressions for interpreting the eNMR data using concentrated solution theory. These expressions only apply at very early times after polarization when concentration gradients and diffusive fluxes can be neglected. However, they shed no light on the time- and space-dependence of the velocities of the cations and anions. The aim of this study is to provide a deeper understanding of the transient behavior of cations and anions in polymer electrolytes. We examine the role of diffusion and migration in a poly(ethylene oxide)-based (PEO) and lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) electrolytes using concentrated solution theory. This formulation was used to investigate how these negative transference numbers influence the magnitudes and directions of ion velocities when a fixed current is imposed on the electrolyte during the passage of current. Under the constraint of electroneutrality, this study reveals the interplay between diffusion and migration by thorough examination of the local velocity, salt concentration gradient, and flux of ions within the solution. Examining the differences in ion motion when the transference number is negative and comparing it to cases when it is positive, allows us to demonstrate the dynamic nature of the system during galvanostatic conditions. The study also reveals conditions where experimental methods need to focus in order to detect unexpected species migration under negative transference conditions. [1] M. Armand, Solid State Ionics, 9-10 (1983) 745-754. [2] A.K. Shukla, T.P. Kumar, Curr Sci India, 94 (2008) 314-331. [3] R. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Lienafa, J.P. Bonnet, T.N.T. Phan, D. Bertin, D. Gigmes, D. Devaux, R. Denoyel, M. Armand, Nat Mater, 12 (2013) 452-457. [4] C.Y. Tang, K. Hackenberg, Q. Fu, P.M. Ajayan, H. Ardebili, Nano Lett, 12 (2012) 1152-1156. [5] J.W. Park, K. Yoshida, N. Tachikawa, K. Dokko, M. Watanabe, J Power Sources, 196 (2011) 2264-2268. [6] Y.P. Ma, M. Doyle, T.F. Fuller, M.M. Doeff, L.C. Dejonghe, J. Newman, J Electrochem Soc, 142 (1995) 1859-1868. [7] D.M. Pesko, Z.G. Feng, S. Sawhney, J. Newman, V. Srinivasan, N.P. Balsara, J Electrochem Soc, 165 (2018) A3186-A3194. [8] Z.Y. Zhang, L.A. Madsen, J Chem Phys, 140 (2014). [9] M. Gouverneur, F. Schmidt, M. Schonhoff, Phys Chem Chem Phys, 20 (2018) 7470-7478. [10] M.P. Rosenwinkel, M. Schonhoff, J Electrochem Soc, 166 (2019) A1977-A1983. [11] K. Timachova, J. Newman, N.P. Balsara, J Electrochem Soc, 166 (2019) A264-A267.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
小助应助lalalatiancai采纳,获得30
13秒前
28秒前
55秒前
牧百川发布了新的文献求助10
1分钟前
1分钟前
crane完成签到,获得积分10
1分钟前
Orange应助Wjh123456采纳,获得10
1分钟前
2分钟前
2分钟前
Wjh123456发布了新的文献求助10
2分钟前
Wjh123456完成签到,获得积分10
2分钟前
3分钟前
nini发布了新的文献求助10
3分钟前
Enoch发布了新的文献求助10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
Otter完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得30
6分钟前
星辰大海应助科研通管家采纳,获得10
6分钟前
CodeCraft应助Henry采纳,获得10
6分钟前
6分钟前
李淡定发布了新的文献求助10
6分钟前
6分钟前
Henry发布了新的文献求助10
6分钟前
7分钟前
赵十七完成签到 ,获得积分10
7分钟前
8分钟前
孙行行发布了新的文献求助10
8分钟前
ly完成签到 ,获得积分10
8分钟前
qcr应助孙行行采纳,获得10
8分钟前
Lucas应助孙行行采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
小马甲应助科研通管家采纳,获得10
8分钟前
朱佳宁完成签到 ,获得积分10
8分钟前
wxx完成签到,获得积分20
9分钟前
9分钟前
顺利南珍完成签到,获得积分20
9分钟前
9分钟前
Jack发布了新的文献求助10
9分钟前
科目三应助Jack采纳,获得10
10分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3590747
求助须知:如何正确求助?哪些是违规求助? 3159139
关于积分的说明 9521965
捐赠科研通 2862034
什么是DOI,文献DOI怎么找? 1572925
邀请新用户注册赠送积分活动 738272
科研通“疑难数据库(出版商)”最低求助积分说明 722751