Comparative performance of 3D-DenseNet, 3D-ResNet, and 3D-VGG models in polyp detection for CT colonography

卷积神经网络 人工智能 计算机科学 接收机工作特性 残差神经网络 残余物 三维模型 深度学习 模式识别(心理学) 计算机视觉 算法 机器学习
作者
Tomoki Uemura,Janne J. Näppi,Tetsuo Hironaka,Hyoung Seop Kim,Hiroyuki Yoshida
出处
期刊:Medical Imaging 2020: Computer-Aided Diagnosis 被引量:18
标识
DOI:10.1117/12.2549103
摘要

Three-dimensional (3D) convolutional neural networks (CNNs) can process volumetric medical imaging data in their native volumetric input form. However, there is little information about the comparative performance of such models in medical imaging in general and in CT colonography (CTC) in particular. We compared the performance of a 3D densely connected CNN (3D-DenseNet) with those of the popular 3D residual CNN (3D-ResNet) and 3D Visual Geometry Group CNN (3D-VGG) in the reduction of false-positive detections (FPs) in computer-aided detection (CADe) of polyps in CTC. VGG is the earliest CNN design of these three models. ResNet has been used widely as a de-facto standard model for constructing deep CNNs for image classification in medical imaging. DenseNet is the most recent of these models and improves the flow of information and reduces the number of network parameters as compared to those of ResNet and VGG. For the evaluation, we used 403 CTC datasets from 203 patients. The classification performance of the CNNs was evaluated by use of 5-fold cross-validation, where the area under the receiver operating characteristic curve (AUC) was used as the figure of merit. Each training fold was balanced by use of data augmentation of the samples of real polyps. Our preliminary results showed that the AUC value of the 3D-DenseNet (0.951) was statistically significantly higher than those of the reference models (P < 0.005), indicating that the 3D-DenseNet has the potential of substantially outperforming the other models in reducing FPs in CADe for CTC. This improvement was highest for the smallest polyps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尊敬的怀曼完成签到,获得积分10
刚刚
刚刚
111完成签到,获得积分10
刚刚
所所应助想毕业的小孩采纳,获得10
1秒前
1秒前
科研通AI5应助光亮映波采纳,获得10
1秒前
Lee完成签到,获得积分10
1秒前
帅帅厅发布了新的文献求助10
2秒前
廉泽完成签到,获得积分10
2秒前
汉堡包应助文艺明杰采纳,获得10
2秒前
orixero应助宓绍辉采纳,获得10
2秒前
Orange应助Tumbleweed668采纳,获得10
2秒前
坚强谷槐发布了新的文献求助10
3秒前
3秒前
彩色的道天www完成签到,获得积分10
4秒前
小易发布了新的文献求助10
4秒前
所所应助顾景咿呀采纳,获得10
4秒前
5秒前
6秒前
6秒前
呆萌的元冬完成签到 ,获得积分10
6秒前
6秒前
lvlvlvsh发布了新的文献求助10
7秒前
海棠花发布了新的文献求助10
7秒前
jelly完成签到,获得积分10
7秒前
彭于晏应助wang采纳,获得30
7秒前
熊尼完成签到,获得积分10
7秒前
繁荣的寻芹完成签到,获得积分10
8秒前
CodeCraft应助满意的跳跳糖采纳,获得10
8秒前
9秒前
lan完成签到,获得积分10
9秒前
MONEY完成签到,获得积分20
9秒前
orixero应助小白的姐姐采纳,获得10
10秒前
Biscuit发布了新的文献求助10
10秒前
10秒前
彩色鹏煊发布了新的文献求助10
11秒前
John发布了新的文献求助10
12秒前
研友_VZG7GZ应助ZDP采纳,获得10
12秒前
曾诗婷完成签到 ,获得积分10
13秒前
jjjjjj发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192585
求助须知:如何正确求助?哪些是违规求助? 4375495
关于积分的说明 13625426
捐赠科研通 4229959
什么是DOI,文献DOI怎么找? 2320250
邀请新用户注册赠送积分活动 1318545
关于科研通互助平台的介绍 1268863