Comparative performance of 3D-DenseNet, 3D-ResNet, and 3D-VGG models in polyp detection for CT colonography

卷积神经网络 人工智能 计算机科学 接收机工作特性 残差神经网络 残余物 三维模型 深度学习 模式识别(心理学) 计算机视觉 算法 机器学习
作者
Tomoki Uemura,Janne J. Näppi,Tetsuo Hironaka,Hyoung Seop Kim,Hiroyuki Yoshida
出处
期刊:Medical Imaging 2020: Computer-Aided Diagnosis 被引量:18
标识
DOI:10.1117/12.2549103
摘要

Three-dimensional (3D) convolutional neural networks (CNNs) can process volumetric medical imaging data in their native volumetric input form. However, there is little information about the comparative performance of such models in medical imaging in general and in CT colonography (CTC) in particular. We compared the performance of a 3D densely connected CNN (3D-DenseNet) with those of the popular 3D residual CNN (3D-ResNet) and 3D Visual Geometry Group CNN (3D-VGG) in the reduction of false-positive detections (FPs) in computer-aided detection (CADe) of polyps in CTC. VGG is the earliest CNN design of these three models. ResNet has been used widely as a de-facto standard model for constructing deep CNNs for image classification in medical imaging. DenseNet is the most recent of these models and improves the flow of information and reduces the number of network parameters as compared to those of ResNet and VGG. For the evaluation, we used 403 CTC datasets from 203 patients. The classification performance of the CNNs was evaluated by use of 5-fold cross-validation, where the area under the receiver operating characteristic curve (AUC) was used as the figure of merit. Each training fold was balanced by use of data augmentation of the samples of real polyps. Our preliminary results showed that the AUC value of the 3D-DenseNet (0.951) was statistically significantly higher than those of the reference models (P < 0.005), indicating that the 3D-DenseNet has the potential of substantially outperforming the other models in reducing FPs in CADe for CTC. This improvement was highest for the smallest polyps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一介书生发布了新的文献求助10
刚刚
1秒前
yzm发布了新的文献求助10
2秒前
小贩发布了新的文献求助10
3秒前
Akim应助冷傲雨寒采纳,获得10
4秒前
田様应助李明涵采纳,获得10
4秒前
VISSUA完成签到,获得积分10
5秒前
麦子发布了新的文献求助10
6秒前
追寻念云完成签到 ,获得积分10
7秒前
WSGQT发布了新的文献求助10
7秒前
8秒前
sinn17完成签到,获得积分10
8秒前
科研通AI2S应助VISSUA采纳,获得10
10秒前
所所应助聪聪采纳,获得10
10秒前
实验室第一巴图鲁完成签到,获得积分10
12秒前
12秒前
桐桐应助曦梦源采纳,获得10
12秒前
宋晴应助lq采纳,获得10
13秒前
JamesPei应助Logan采纳,获得10
13秒前
赵坤煊发布了新的文献求助20
13秒前
阿连发布了新的文献求助10
14秒前
伶俐碧萱完成签到 ,获得积分10
14秒前
小李在哪儿完成签到 ,获得积分10
15秒前
城南完成签到 ,获得积分10
17秒前
烟花应助q792309106采纳,获得30
19秒前
鸣笛应助青云采纳,获得30
19秒前
20秒前
22秒前
22秒前
lyt发布了新的文献求助20
23秒前
24秒前
25秒前
25秒前
26秒前
xinyueyue完成签到,获得积分10
27秒前
123应助hyjhhy采纳,获得20
27秒前
27秒前
迷路的蛋挞应助王宏宇采纳,获得10
27秒前
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992868
求助须知:如何正确求助?哪些是违规求助? 3533665
关于积分的说明 11263418
捐赠科研通 3273432
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629