Comparative performance of 3D-DenseNet, 3D-ResNet, and 3D-VGG models in polyp detection for CT colonography

卷积神经网络 人工智能 计算机科学 接收机工作特性 残差神经网络 残余物 三维模型 深度学习 模式识别(心理学) 计算机视觉 算法 机器学习
作者
Tomoki Uemura,Janne J. Näppi,Tetsuo Hironaka,Hyoung Seop Kim,Hiroyuki Yoshida
出处
期刊:Medical Imaging 2020: Computer-Aided Diagnosis 被引量:18
标识
DOI:10.1117/12.2549103
摘要

Three-dimensional (3D) convolutional neural networks (CNNs) can process volumetric medical imaging data in their native volumetric input form. However, there is little information about the comparative performance of such models in medical imaging in general and in CT colonography (CTC) in particular. We compared the performance of a 3D densely connected CNN (3D-DenseNet) with those of the popular 3D residual CNN (3D-ResNet) and 3D Visual Geometry Group CNN (3D-VGG) in the reduction of false-positive detections (FPs) in computer-aided detection (CADe) of polyps in CTC. VGG is the earliest CNN design of these three models. ResNet has been used widely as a de-facto standard model for constructing deep CNNs for image classification in medical imaging. DenseNet is the most recent of these models and improves the flow of information and reduces the number of network parameters as compared to those of ResNet and VGG. For the evaluation, we used 403 CTC datasets from 203 patients. The classification performance of the CNNs was evaluated by use of 5-fold cross-validation, where the area under the receiver operating characteristic curve (AUC) was used as the figure of merit. Each training fold was balanced by use of data augmentation of the samples of real polyps. Our preliminary results showed that the AUC value of the 3D-DenseNet (0.951) was statistically significantly higher than those of the reference models (P < 0.005), indicating that the 3D-DenseNet has the potential of substantially outperforming the other models in reducing FPs in CADe for CTC. This improvement was highest for the smallest polyps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
祁缜完成签到,获得积分10
刚刚
Wmhuahuaood完成签到,获得积分20
1秒前
snwnqi应助Chang采纳,获得10
1秒前
1秒前
霸气咖啡豆完成签到,获得积分10
2秒前
白白SAMA123发布了新的文献求助10
2秒前
2秒前
愿好应助子铭采纳,获得10
3秒前
小马甲应助寂寞的小乌龟采纳,获得10
3秒前
糖果不甜发布了新的文献求助10
4秒前
xiaoX12138发布了新的文献求助10
4秒前
acme完成签到,获得积分10
4秒前
Jasper应助血鸚鵡采纳,获得20
4秒前
4秒前
5秒前
5秒前
6秒前
Lucas应助fantianhui采纳,获得30
6秒前
嘿嘿发布了新的文献求助10
7秒前
干净黄豆完成签到,获得积分10
7秒前
隐形曼青应助我的昵称采纳,获得30
7秒前
隐形曼青应助小赵冲冲冲采纳,获得10
7秒前
8秒前
阿阳发布了新的文献求助10
8秒前
8秒前
FSX639163发布了新的文献求助10
8秒前
8秒前
大气鹰发布了新的文献求助10
9秒前
共享精神应助微笑奇迹采纳,获得10
9秒前
mrjohn发布了新的文献求助150
9秒前
优美的玉米完成签到,获得积分10
9秒前
熊猫完成签到 ,获得积分10
10秒前
王泽发布了新的文献求助10
11秒前
芋泥发布了新的文献求助10
11秒前
nieanicole完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
宁小童完成签到,获得积分10
13秒前
十七完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409900
求助须知:如何正确求助?哪些是违规求助? 4527473
关于积分的说明 14110874
捐赠科研通 4441846
什么是DOI,文献DOI怎么找? 2437698
邀请新用户注册赠送积分活动 1429670
关于科研通互助平台的介绍 1407745