Finding Diverse Failure Scenarios in Autonomous Systems Using Adaptive Stress Testing

蒙特卡罗树搜索 计算机科学 强化学习 解算器 集合(抽象数据类型) 蒙特卡罗方法 随机测试 重要性抽样 领域(数学分析) 压力测试(软件) 任务(项目管理) 功能(生物学) 测试用例 机器学习 工程类 统计 数学分析 回归分析 生物 程序设计语言 系统工程 进化生物学 数学
作者
Peter Du,Katherine Driggs-Campbell
出处
期刊:SAE international journal of connected and automated vehicles 卷期号:2 (4): 241-251 被引量:9
标识
DOI:10.4271/12-02-04-0018
摘要

<div>Identifying and eliminating failure scenarios is critical in the development of autonomous vehicle (AV) systems. However, finding such failures through real-world vehicle-level testing is a difficult task as system disengagements and accidents are rare occurrences. Simulation approaches have been proposed to supplement vehicle-level testing and reduce the costs associated with operating large fleets of autonomous test vehicles. While one can run more vehicles in simulation than in the real world, applying traditional Monte Carlo sampling techniques to find failures still yields an unguided search and a large waste of computing resources. A more directed method than random sampling is needed to identify failure scenarios in a computationally efficient manner. Adaptive Stress Testing (AST) is a method that uses reinforcement learning (RL) paradigms to efficiently find failure scenarios in stochastic sequential decision-making systems. Through iteratively exploring the action space and collecting rewards, AST aims to establish an optimal policy that generates a set of high-probability failure trajectories. However, the trajectories obtained through AST tend to lack diversity and converge to similar failure states. Due to the range of possible accident scenarios an AV can face, such homogeneous failures are not very beneficial in validating a system’s roadworthiness. In this article, we present a method to enhance the expressiveness of the failure scenarios found using AST. By augmenting the reward function used by AST with domain relevant information, we guide the solver to discover more diverse sets of trajectories. We present an implementation using Monte Carlo Tree Search (MCTS). To show the efficacy of our approach, we evaluate the failure trajectories obtained for a vehicle and pedestrian crosswalk scenario. We show that our implementation is able to find more diverse and domain-relevant failures when compared with baseline AST.</div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华老五发布了新的文献求助20
刚刚
lishihao完成签到,获得积分10
1秒前
刘喵喵发布了新的文献求助10
1秒前
scq发布了新的文献求助10
3秒前
zgs完成签到 ,获得积分10
3秒前
Vii应助faye采纳,获得10
3秒前
111完成签到,获得积分20
4秒前
泥中尘发布了新的文献求助10
4秒前
4秒前
5秒前
乐乐乐乐乐乐给乐乐乐乐乐乐的求助进行了留言
6秒前
smile发布了新的文献求助10
8秒前
cc发布了新的文献求助80
8秒前
9秒前
11秒前
小小斌完成签到,获得积分10
11秒前
12秒前
13秒前
Zn应助cc采纳,获得10
14秒前
是否完成签到,获得积分10
14秒前
六金发布了新的文献求助10
15秒前
SciGPT应助宅木采纳,获得10
16秒前
开放沛柔发布了新的文献求助10
16秒前
o0bubble0o发布了新的文献求助10
16秒前
无语的采柳完成签到 ,获得积分10
19秒前
21秒前
22秒前
科研圈外人完成签到 ,获得积分10
24秒前
yukeshou完成签到,获得积分10
24秒前
25秒前
25秒前
落俗发布了新的文献求助10
25秒前
心子吖发布了新的文献求助10
25秒前
害羞人英发布了新的文献求助10
26秒前
养虎人发布了新的文献求助10
26秒前
细腻白柏发布了新的文献求助10
27秒前
星辰大海应助o0bubble0o采纳,获得10
29秒前
刘亚茹发布了新的文献求助10
29秒前
咩咩1完成签到,获得积分10
31秒前
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526144
求助须知:如何正确求助?哪些是违规求助? 3106527
关于积分的说明 9280744
捐赠科研通 2804127
什么是DOI,文献DOI怎么找? 1539278
邀请新用户注册赠送积分活动 716514
科研通“疑难数据库(出版商)”最低求助积分说明 709495