🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

A Path-Integral-Based Reinforcement Learning Algorithm for Path Following of an Autoassembly Mobile Robot

计算机科学 强化学习 反向动力学 移动机器人 趋同(经济学) 机器人 路径(计算) 人工神经网络 运动学 数学优化 控制理论(社会学) 人工智能 控制(管理) 数学 经济增长 经典力学 物理 经济 程序设计语言
作者
Wei Zhu,Xian Guo,Yongchun Fang,Xueyou Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (11): 4487-4499 被引量:31
标识
DOI:10.1109/tnnls.2019.2955699
摘要

Reinforcement learning (RL) combined with deep neural networks has led to a number of great achievements for robot control in virtual computer environments, where sufficient data can be obtained without any difficulty to train various models. However, thus far, only few and relatively simple tasks have been accomplished for practical robots, which is mainly caused by the following two reasons. First, training with real robots, especially with dynamic systems, is too complicated to be fully and accurately represented in simulations. Second, it is very costly to obtain training data from real systems. To address these two problems effectively, in this article, a path-integral-based RL algorithm is proposed for the task of path following of an autoassembly mobile robot, wherein three kernel techniques are introduced. First, a generalized path-integral-control approach is proposed to obtain the numerical solution of a stochastic dynamical system, wherein the calculation of the gradient and kinematics inverse is avoided to ensure fast and reliable training convergence. Second, a novel parameterization method using Lyapunov techniques is introduced into the RL algorithm to ensure good performance of the system when directly transferring simulation results into practical systems. Third, the optimal parameters for all discrete initial states are first learned offline and then tuned online to improve the generalization and real-time performance. In addition to the optimization control for the mobile robot, the proposed method also possesses general applicability for a class of nonlinear systems such as crane systems. Simulation and experimental results are included and analyzed to illustrate the superior performance of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Milou发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
SciGPT应助没有昵称采纳,获得10
2秒前
安详的不二应助科研渣渣采纳,获得10
3秒前
希望天下0贩的0应助ss采纳,获得10
3秒前
明芬发布了新的文献求助10
3秒前
半糖糖应助加油采纳,获得20
4秒前
4秒前
YLQ完成签到,获得积分10
5秒前
优美一曲发布了新的文献求助10
6秒前
科研通AI5应助哔哔鱼采纳,获得10
7秒前
CCC发布了新的文献求助10
7秒前
8秒前
JIASHOUSHOU发布了新的文献求助10
8秒前
9秒前
大模型应助小鹿斑比采纳,获得80
9秒前
郑夏岚发布了新的文献求助10
9秒前
动漫大师发布了新的文献求助10
9秒前
苹果语山完成签到,获得积分10
9秒前
科研通AI2S应助mmd采纳,获得10
10秒前
jhr完成签到,获得积分10
10秒前
慕青应助海德堡采纳,获得10
12秒前
华仔应助自信向梦采纳,获得10
12秒前
今后应助喜悦一曲采纳,获得10
13秒前
13秒前
ykiiii发布了新的文献求助10
14秒前
隐形故事完成签到 ,获得积分10
15秒前
脑洞疼应助个性醉波采纳,获得10
17秒前
天天快乐应助JIASHOUSHOU采纳,获得10
17秒前
安详的不二应助林666采纳,获得10
17秒前
18秒前
无所谓666完成签到,获得积分10
18秒前
moumou完成签到,获得积分10
19秒前
SciGPT应助x123采纳,获得10
20秒前
柯不正完成签到,获得积分10
22秒前
22秒前
粗心的从露完成签到,获得积分10
23秒前
九门提督发布了新的文献求助10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
Generative Machine Learning Models in Medical Image Computing 590
Barth, Derrida and the Language of Theology 500
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3600027
求助须知:如何正确求助?哪些是违规求助? 3168757
关于积分的说明 9559194
捐赠科研通 2875150
什么是DOI,文献DOI怎么找? 1578638
邀请新用户注册赠送积分活动 742232
科研通“疑难数据库(出版商)”最低求助积分说明 725097