Accurate prediction of responses to transarterial chemoembolization for patients with hepatocellular carcinoma by using artificial intelligence in contrast-enhanced ultrasound

医学 无线电技术 肝细胞癌 超声波 超声造影 介入放射学 放射科 接收机工作特性 队列 神经组阅片室 曲线下面积 内科学 神经学 精神科
作者
Dan Liu,Fei Liu,Xiaoyan Xie,Liya Su,Ming Liu,Xiaohua Xie,Ming Kuang,Guangliang Huang,Yuqi Wang,Hui Zhou,Kun Wang,Manxia Lin,Jie Tian
出处
期刊:European Radiology [Springer Nature]
卷期号:30 (4): 2365-2376 被引量:114
标识
DOI:10.1007/s00330-019-06553-6
摘要

We aimed to establish and validate an artificial intelligence–based radiomics strategy for predicting personalized responses of hepatocellular carcinoma (HCC) to first transarterial chemoembolization (TACE) session by quantitatively analyzing contrast-enhanced ultrasound (CEUS) cines. One hundred and thirty HCC patients (89 for training, 41 for validation), who received ultrasound examination (CEUS and B-mode) within 1 week before the first TACE session, were retrospectively enrolled. Ultrasonographic data was used for building and validating deep learning radiomics-based CEUS model (R-DLCEUS), machine learning radiomics-based time-intensity curve of CEUS model (R-TIC), and machine learning radiomics-based B-Mode images model (R-BMode), respectively, to predict responses (objective-response and non-response) to TACE with reference to modified response evaluation criteria in solid tumor. The performance of models was compared by areas under the receiver operating characteristic curve (AUC) and the DeLong test was used to compare different AUCs. The prediction robustness was assessed for each model. AUCs of R-DLCEUS, R-TIC, and R-BMode were 0.93 (95% CI, 0.80–0.98), 0.80 (95% CI, 0.64–0.90), and 0.81 (95% CI, 0.67–0.95) in the validation cohort, respectively. AUC of R-DLCEUS shows significant difference compared with that of R-TIC (p = 0.034) and R-BMode (p = 0.039), whereas R-TIC was not significantly different from R-BMode. The performance was highly reproducible with different training and validation cohorts. DL-based radiomics method can effectively utilize CEUS cines to achieve accurate and personalized prediction. It is easy to operate and holds good potential for benefiting TACE candidates in clinical practice. • Deep learning (DL) radiomics-based CEUS model can accurately predict responses of HCC patients to their first TACE session by quantitatively analyzing their pre-operative CEUS cines. • The visualization of the 3D CNN analysis adopted in CEUS model provided direct insight into what computers “see” on CEUS cines, which can help people understand the interpretation of CEUS data. • The proposed prediction method is easy to operate and labor-saving for clinical practice, facilitating the clinical treatment decision of HCCs with very few time costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长风完成签到,获得积分10
刚刚
榴下晨光完成签到 ,获得积分10
1秒前
1秒前
cyx完成签到,获得积分20
2秒前
阿笨猫完成签到,获得积分10
3秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
3秒前
李博宇完成签到,获得积分10
4秒前
整齐芷文完成签到,获得积分10
4秒前
pink完成签到,获得积分10
6秒前
7秒前
CipherSage应助悲凉的熠彤采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
zho应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
wwc发布了新的文献求助10
7秒前
Gauss应助科研通管家采纳,获得50
8秒前
momo应助科研通管家采纳,获得10
8秒前
caiiiii发布了新的文献求助10
8秒前
QQQ发布了新的文献求助10
8秒前
momo应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
secbox完成签到,获得积分10
9秒前
YJ完成签到 ,获得积分10
9秒前
AI完成签到 ,获得积分10
10秒前
仁爱的新柔完成签到,获得积分10
11秒前
tongkaibing发布了新的文献求助10
12秒前
13秒前
777发布了新的文献求助10
13秒前
14秒前
科研通AI5应助Obliviate采纳,获得30
14秒前
早日毕业发布了新的文献求助10
14秒前
感动的安阳完成签到,获得积分10
16秒前
17秒前
完美世界应助功必扬采纳,获得10
17秒前
文静紫霜完成签到 ,获得积分10
18秒前
18秒前
爆米花应助ruixain采纳,获得10
19秒前
林中鹿发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540610
求助须知:如何正确求助?哪些是违规求助? 3117886
关于积分的说明 9333050
捐赠科研通 2815748
什么是DOI,文献DOI怎么找? 1547723
邀请新用户注册赠送积分活动 721130
科研通“疑难数据库(出版商)”最低求助积分说明 712499