Molecule-gated surface chemistry of Pt nanoparticles for constructing activity-controllable nanozymes and a three-in-one sensor

化学 纳米颗粒 纳米技术 分子 有机化学 材料科学
作者
Min Gao,Pengli An,Honghong Rao,Zhengrong Niu,Xin Xue,Mingyue Luo,Xiuhui Liu,Xue Zhang,Xiaoquan Lu
出处
期刊:Analyst [The Royal Society of Chemistry]
卷期号:145 (4): 1279-1287 被引量:18
标识
DOI:10.1039/c9an01956a
摘要

Herein, a simple strategy for constructing activity-controllable nanozymes is proposed based on the glutathione (GSH)-gated surface chemistry of citrate-capped Pt nanoparticles (PtNPs). PtNPs have been shown to have oxidase-like activity that can effectively catalyze the oxidation of 3,3',5,5'-tertamethylbenzidine (TMB) by O2, resulting in a typical color reaction from colorless to blue. We found that GSH can inhibit the oxidase-like activity of PtNPs as a molecule-gated surface chemistry element, resulting in a dramatic decrease of the oxidation of TMB. The addition of copper ions (Cu2+) could oxidize GSH into glutathione disulfide (GSSG), resulting in the distinct suppression of GSH-modulated PtNP surface chemistry and oxidase-like activity inhibition, which further results in a significant acceleration of TMB oxidation and the obvious recovery of intense blue color. Furthermore, the color-based detection signal associated with the redox of TMB indicator here was found to show good fluorescence and a photothermal effect and exhibit sensitive and selective response toward the proposed molecule-gated surface chemistry and Cu2+ target. On the basis of this phenomenon, we successfully constructed a three-in-one sensor for Cu2+ with a triple signal readout, colorimetric, photothermal (temperature), and fluorescence, depending on the proposed in situ modulation method for PtNP catalysis. The applicability of the three-in-one sensor was also demonstrated by measuring Cu2+ in human serum with a standard addition method, and the results are of satisfactory accuracy as confirmed by ICP-MS measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zho发布了新的文献求助10
刚刚
刚刚
英姑应助爱哭的小女孩采纳,获得10
2秒前
小马甲应助lxz采纳,获得10
2秒前
觱栗发布了新的文献求助10
3秒前
过分动真发布了新的文献求助10
3秒前
啾啾完成签到,获得积分10
3秒前
隐形的寄云完成签到,获得积分10
4秒前
6秒前
7秒前
10秒前
10秒前
HJM关注了科研通微信公众号
11秒前
11秒前
犹豫小伙发布了新的文献求助10
12秒前
今后应助暮桉采纳,获得10
13秒前
今后应助周Z采纳,获得10
13秒前
joker发布了新的文献求助10
13秒前
后来完成签到,获得积分10
15秒前
wwww0wwww应助上进生采纳,获得10
16秒前
16秒前
17秒前
ccc完成签到,获得积分10
17秒前
17秒前
樱桃猴子应助诶嘿嘿采纳,获得10
18秒前
小蘑菇应助诶嘿嘿采纳,获得10
18秒前
僦是卜够完成签到,获得积分10
18秒前
ljw发布了新的文献求助10
22秒前
22秒前
22秒前
慕青应助犹豫小伙采纳,获得10
25秒前
调研昵称发布了新的文献求助10
25秒前
27秒前
27秒前
28秒前
30秒前
ljw完成签到,获得积分20
30秒前
31秒前
31秒前
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145276
求助须知:如何正确求助?哪些是违规求助? 2796719
关于积分的说明 7820904
捐赠科研通 2452997
什么是DOI,文献DOI怎么找? 1305336
科研通“疑难数据库(出版商)”最低求助积分说明 627483
版权声明 601464