亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimizing Streaming Parallelism on Heterogeneous Many-Core Architectures

计算机科学 粒度 分拆(数论) 分布式计算 利用 对称多处理机系统 多核处理器 任务(项目管理) 共享资源 计算 并行计算 计算机体系结构 计算机网络 数学 管理 算法 组合数学 经济 操作系统 计算机安全
作者
Peng Zhang,Jianbin Fang,Canqun Yang,Chun Huang,Tao Tang,Zheng Wang
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (8): 1878-1896 被引量:16
标识
DOI:10.1109/tpds.2020.2978045
摘要

As many-core accelerators keep integrating more processing units, it becomes increasingly more difficult for a parallel application to make effective use of all available resources. An effective way of improving hardware utilization is to exploit spatial and temporal sharing of the heterogeneous processing units by multiplexing computation and communication tasks - a strategy known as heterogeneous streaming. Achieving effective heterogeneous streaming requires carefully partitioning hardware among tasks, and matching the granularity of task parallelism to the resource partition. However, finding the right resource partitioning and task granularity is extremely challenging, because there is a large number of possible solutions and the optimal solution varies across programs and datasets. This article presents an automatic approach to quickly derive a good solution for hardware resource partition and task granularity for task-based parallel applications on heterogeneous many-core architectures. Our approach employs a performance model to estimate the resulting performance of the target application under a given resource partition and task granularity configuration. The model is used as a utility to quickly search for a good configuration at runtime. Instead of hand-crafting an analytical model that requires expert insights into low-level hardware details, we employ machine learning techniques to automatically learn it. We achieve this by first learning a predictive model offline using training programs. The learned model can then be used to predict the performance of any unseen program at runtime. We apply our approach to 39 representative parallel applications and evaluate it on two representative heterogeneous many-core platforms: a CPU-XeonPhi platform and a CPU-GPU platform. Compared to the single-stream version, our approach achieves, on average, a 1.6x and 1.1x speedup on the XeonPhi and the GPU platform, respectively. These results translate to over 93 percent of the performance delivered by a theoretically perfect predictor.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮生发布了新的文献求助10
3秒前
4秒前
iuuuuu发布了新的文献求助10
13秒前
13秒前
HYQ完成签到 ,获得积分10
16秒前
17秒前
toto发布了新的文献求助10
19秒前
Conner完成签到 ,获得积分10
20秒前
ceeray23发布了新的文献求助20
23秒前
34秒前
Akim应助iuuuuu采纳,获得10
34秒前
柯慕玉泽发布了新的文献求助10
39秒前
吴开珍完成签到 ,获得积分10
40秒前
自由的不弱应助ceeray23采纳,获得20
40秒前
1分钟前
面包战士发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
Moko完成签到 ,获得积分10
1分钟前
杜大帅发布了新的文献求助10
2分钟前
灰灰完成签到,获得积分10
3分钟前
cappuccino发布了新的文献求助10
3分钟前
3分钟前
羽宇发布了新的文献求助10
3分钟前
LRR完成签到 ,获得积分10
3分钟前
樱桃完成签到 ,获得积分10
4分钟前
4分钟前
yue发布了新的文献求助10
4分钟前
三心草完成签到 ,获得积分10
4分钟前
XXXXXX完成签到,获得积分10
4分钟前
隐形曼青应助yue采纳,获得10
4分钟前
科研通AI6.2应助zhang采纳,获得10
4分钟前
失眠的曼冬完成签到,获得积分20
4分钟前
Lan完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
gffh完成签到,获得积分10
5分钟前
852应助尘默采纳,获得10
5分钟前
zhang发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875841
求助须知:如何正确求助?哪些是违规求助? 6521910
关于积分的说明 15677729
捐赠科研通 4993951
什么是DOI,文献DOI怎么找? 2691705
邀请新用户注册赠送积分活动 1633882
关于科研通互助平台的介绍 1591555