Optimizing Streaming Parallelism on Heterogeneous Many-Core Architectures

计算机科学 粒度 分拆(数论) 分布式计算 利用 对称多处理机系统 多核处理器 任务(项目管理) 共享资源 计算 并行计算 计算机体系结构 计算机网络 组合数学 管理 经济 操作系统 计算机安全 数学 算法
作者
Peng Zhang,Jianbin Fang,Canqun Yang,Chun Huang,Tao Tang,Zheng Wang
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (8): 1878-1896 被引量:16
标识
DOI:10.1109/tpds.2020.2978045
摘要

As many-core accelerators keep integrating more processing units, it becomes increasingly more difficult for a parallel application to make effective use of all available resources. An effective way of improving hardware utilization is to exploit spatial and temporal sharing of the heterogeneous processing units by multiplexing computation and communication tasks - a strategy known as heterogeneous streaming. Achieving effective heterogeneous streaming requires carefully partitioning hardware among tasks, and matching the granularity of task parallelism to the resource partition. However, finding the right resource partitioning and task granularity is extremely challenging, because there is a large number of possible solutions and the optimal solution varies across programs and datasets. This article presents an automatic approach to quickly derive a good solution for hardware resource partition and task granularity for task-based parallel applications on heterogeneous many-core architectures. Our approach employs a performance model to estimate the resulting performance of the target application under a given resource partition and task granularity configuration. The model is used as a utility to quickly search for a good configuration at runtime. Instead of hand-crafting an analytical model that requires expert insights into low-level hardware details, we employ machine learning techniques to automatically learn it. We achieve this by first learning a predictive model offline using training programs. The learned model can then be used to predict the performance of any unseen program at runtime. We apply our approach to 39 representative parallel applications and evaluate it on two representative heterogeneous many-core platforms: a CPU-XeonPhi platform and a CPU-GPU platform. Compared to the single-stream version, our approach achieves, on average, a 1.6x and 1.1x speedup on the XeonPhi and the GPU platform, respectively. These results translate to over 93 percent of the performance delivered by a theoretically perfect predictor.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健壮熊猫完成签到,获得积分20
1秒前
zhangliangliang完成签到,获得积分10
2秒前
吉以寒完成签到,获得积分10
2秒前
tzj发布了新的文献求助10
2秒前
王嘉鑫完成签到,获得积分10
3秒前
orixero应助leoo采纳,获得10
3秒前
那地方完成签到,获得积分10
4秒前
赘婿应助谦让依云采纳,获得10
4秒前
xiaosi完成签到,获得积分10
4秒前
4秒前
沉默的涵雁完成签到,获得积分20
8秒前
10秒前
轻松玫瑰发布了新的文献求助10
10秒前
一年半太久只争朝夕完成签到,获得积分10
11秒前
12秒前
13秒前
yuminger完成签到 ,获得积分10
13秒前
leoo发布了新的文献求助10
14秒前
14秒前
17秒前
汤健发布了新的文献求助10
18秒前
18秒前
轻松玫瑰完成签到,获得积分20
21秒前
平常亦凝完成签到 ,获得积分10
23秒前
谦让依云发布了新的文献求助10
24秒前
24秒前
lin完成签到,获得积分10
25秒前
酷波er应助卡卡采纳,获得10
26秒前
123关闭了123文献求助
26秒前
量子星尘发布了新的文献求助10
26秒前
26秒前
Dobrzs发布了新的文献求助10
27秒前
27秒前
尊敬的夏槐完成签到,获得积分10
27秒前
XLH发布了新的文献求助10
28秒前
28秒前
28秒前
Hello应助莫若舞采纳,获得10
30秒前
完美世界应助arniu2008采纳,获得10
31秒前
尘扬完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604088
求助须知:如何正确求助?哪些是违规求助? 4688919
关于积分的说明 14857074
捐赠科研通 4696569
什么是DOI,文献DOI怎么找? 2541150
邀请新用户注册赠送积分活动 1507314
关于科研通互助平台的介绍 1471851