Optimizing Streaming Parallelism on Heterogeneous Many-Core Architectures

计算机科学 粒度 分拆(数论) 分布式计算 利用 对称多处理机系统 多核处理器 任务(项目管理) 共享资源 计算 并行计算 计算机体系结构 计算机网络 数学 管理 算法 组合数学 经济 操作系统 计算机安全
作者
Peng Zhang,Jianbin Fang,Canqun Yang,Chun Huang,Tao Tang,Zheng Wang
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (8): 1878-1896 被引量:16
标识
DOI:10.1109/tpds.2020.2978045
摘要

As many-core accelerators keep integrating more processing units, it becomes increasingly more difficult for a parallel application to make effective use of all available resources. An effective way of improving hardware utilization is to exploit spatial and temporal sharing of the heterogeneous processing units by multiplexing computation and communication tasks - a strategy known as heterogeneous streaming. Achieving effective heterogeneous streaming requires carefully partitioning hardware among tasks, and matching the granularity of task parallelism to the resource partition. However, finding the right resource partitioning and task granularity is extremely challenging, because there is a large number of possible solutions and the optimal solution varies across programs and datasets. This article presents an automatic approach to quickly derive a good solution for hardware resource partition and task granularity for task-based parallel applications on heterogeneous many-core architectures. Our approach employs a performance model to estimate the resulting performance of the target application under a given resource partition and task granularity configuration. The model is used as a utility to quickly search for a good configuration at runtime. Instead of hand-crafting an analytical model that requires expert insights into low-level hardware details, we employ machine learning techniques to automatically learn it. We achieve this by first learning a predictive model offline using training programs. The learned model can then be used to predict the performance of any unseen program at runtime. We apply our approach to 39 representative parallel applications and evaluate it on two representative heterogeneous many-core platforms: a CPU-XeonPhi platform and a CPU-GPU platform. Compared to the single-stream version, our approach achieves, on average, a 1.6x and 1.1x speedup on the XeonPhi and the GPU platform, respectively. These results translate to over 93 percent of the performance delivered by a theoretically perfect predictor.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心的向雁完成签到,获得积分10
1秒前
冲冲冲完成签到 ,获得积分10
2秒前
2秒前
彭十完成签到,获得积分10
2秒前
dasdsa完成签到,获得积分10
2秒前
雁塔吃辣条完成签到,获得积分10
2秒前
pj完成签到,获得积分10
2秒前
2秒前
2秒前
憩在云端发布了新的文献求助10
3秒前
YOLO完成签到 ,获得积分10
3秒前
4秒前
你好完成签到 ,获得积分10
5秒前
5秒前
pj发布了新的文献求助10
5秒前
暮霭沉沉应助六子采纳,获得10
6秒前
隐形的大有完成签到,获得积分10
6秒前
hokin33完成签到,获得积分20
6秒前
丁杰孟完成签到,获得积分10
7秒前
自由冬亦发布了新的文献求助10
7秒前
chaochao完成签到,获得积分10
8秒前
8秒前
冯杰完成签到 ,获得积分10
9秒前
kekekelili完成签到,获得积分10
9秒前
彭十发布了新的文献求助10
9秒前
画画的baby完成签到 ,获得积分10
10秒前
甜甜完成签到,获得积分10
10秒前
上官若男应助哔哔鱼采纳,获得10
10秒前
10秒前
木子发布了新的文献求助30
10秒前
11秒前
lin发布了新的文献求助10
12秒前
12秒前
13秒前
端庄的晓兰完成签到,获得积分10
14秒前
yyh发布了新的文献求助20
14秒前
15秒前
失眠的海云完成签到,获得积分10
15秒前
15秒前
nice1025完成签到,获得积分10
15秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
the development of the right of privacy in new york 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180176
求助须知:如何正确求助?哪些是违规求助? 2830569
关于积分的说明 7978633
捐赠科研通 2492138
什么是DOI,文献DOI怎么找? 1329232
科研通“疑难数据库(出版商)”最低求助积分说明 635705
版权声明 602954