Optimizing Streaming Parallelism on Heterogeneous Many-Core Architectures

计算机科学 粒度 分拆(数论) 分布式计算 利用 对称多处理机系统 多核处理器 任务(项目管理) 共享资源 计算 并行计算 计算机体系结构 计算机网络 组合数学 管理 经济 操作系统 计算机安全 数学 算法
作者
Peng Zhang,Jianbin Fang,Canqun Yang,Chun Huang,Tao Tang,Zheng Wang
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (8): 1878-1896 被引量:16
标识
DOI:10.1109/tpds.2020.2978045
摘要

As many-core accelerators keep integrating more processing units, it becomes increasingly more difficult for a parallel application to make effective use of all available resources. An effective way of improving hardware utilization is to exploit spatial and temporal sharing of the heterogeneous processing units by multiplexing computation and communication tasks - a strategy known as heterogeneous streaming. Achieving effective heterogeneous streaming requires carefully partitioning hardware among tasks, and matching the granularity of task parallelism to the resource partition. However, finding the right resource partitioning and task granularity is extremely challenging, because there is a large number of possible solutions and the optimal solution varies across programs and datasets. This article presents an automatic approach to quickly derive a good solution for hardware resource partition and task granularity for task-based parallel applications on heterogeneous many-core architectures. Our approach employs a performance model to estimate the resulting performance of the target application under a given resource partition and task granularity configuration. The model is used as a utility to quickly search for a good configuration at runtime. Instead of hand-crafting an analytical model that requires expert insights into low-level hardware details, we employ machine learning techniques to automatically learn it. We achieve this by first learning a predictive model offline using training programs. The learned model can then be used to predict the performance of any unseen program at runtime. We apply our approach to 39 representative parallel applications and evaluate it on two representative heterogeneous many-core platforms: a CPU-XeonPhi platform and a CPU-GPU platform. Compared to the single-stream version, our approach achieves, on average, a 1.6x and 1.1x speedup on the XeonPhi and the GPU platform, respectively. These results translate to over 93 percent of the performance delivered by a theoretically perfect predictor.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SPARK应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
今后应助科研通管家采纳,获得10
刚刚
SPARK应助科研通管家采纳,获得10
刚刚
蓝天应助科研通管家采纳,获得20
刚刚
整齐晓筠完成签到 ,获得积分10
1秒前
科研通AI2S应助舒心的雍采纳,获得10
5秒前
贪玩初彤完成签到 ,获得积分10
6秒前
anhuiwsy完成签到 ,获得积分10
9秒前
虚心的乘云完成签到,获得积分10
10秒前
augen完成签到 ,获得积分10
14秒前
14秒前
Peter完成签到 ,获得积分10
16秒前
tjfwg完成签到,获得积分10
18秒前
舒心的雍发布了新的文献求助10
19秒前
djdh发布了新的文献求助200
23秒前
LUNE完成签到 ,获得积分10
25秒前
Iron_five完成签到 ,获得积分0
28秒前
xuxuxuxu完成签到 ,获得积分10
28秒前
激昂的化蛹完成签到,获得积分10
31秒前
31秒前
Borges完成签到 ,获得积分10
32秒前
科研通AI2S应助调皮元珊采纳,获得10
36秒前
HJJHJH发布了新的文献求助10
39秒前
共享精神应助阿星捌采纳,获得10
42秒前
42秒前
45秒前
LucyMartinez完成签到,获得积分10
47秒前
调皮元珊发布了新的文献求助10
49秒前
mogugu完成签到,获得积分10
49秒前
科研通AI6.1应助荷塘月色采纳,获得10
51秒前
香蕉涫完成签到 ,获得积分10
53秒前
LOTUS发布了新的文献求助10
55秒前
Bugs完成签到,获得积分10
56秒前
1分钟前
Anoxia发布了新的文献求助10
1分钟前
1分钟前
长苼发布了新的文献求助10
1分钟前
华仔应助长苼采纳,获得10
1分钟前
万松辉完成签到,获得积分10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5851942
求助须知:如何正确求助?哪些是违规求助? 6274706
关于积分的说明 15627471
捐赠科研通 4967879
什么是DOI,文献DOI怎么找? 2678818
邀请新用户注册赠送积分活动 1623007
关于科研通互助平台的介绍 1579466