Optimizing Streaming Parallelism on Heterogeneous Many-Core Architectures

计算机科学 粒度 分拆(数论) 分布式计算 利用 对称多处理机系统 多核处理器 任务(项目管理) 共享资源 计算 并行计算 计算机体系结构 计算机网络 组合数学 管理 经济 操作系统 计算机安全 数学 算法
作者
Peng Zhang,Jianbin Fang,Canqun Yang,Chun Huang,Tao Tang,Zheng Wang
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (8): 1878-1896 被引量:16
标识
DOI:10.1109/tpds.2020.2978045
摘要

As many-core accelerators keep integrating more processing units, it becomes increasingly more difficult for a parallel application to make effective use of all available resources. An effective way of improving hardware utilization is to exploit spatial and temporal sharing of the heterogeneous processing units by multiplexing computation and communication tasks - a strategy known as heterogeneous streaming. Achieving effective heterogeneous streaming requires carefully partitioning hardware among tasks, and matching the granularity of task parallelism to the resource partition. However, finding the right resource partitioning and task granularity is extremely challenging, because there is a large number of possible solutions and the optimal solution varies across programs and datasets. This article presents an automatic approach to quickly derive a good solution for hardware resource partition and task granularity for task-based parallel applications on heterogeneous many-core architectures. Our approach employs a performance model to estimate the resulting performance of the target application under a given resource partition and task granularity configuration. The model is used as a utility to quickly search for a good configuration at runtime. Instead of hand-crafting an analytical model that requires expert insights into low-level hardware details, we employ machine learning techniques to automatically learn it. We achieve this by first learning a predictive model offline using training programs. The learned model can then be used to predict the performance of any unseen program at runtime. We apply our approach to 39 representative parallel applications and evaluate it on two representative heterogeneous many-core platforms: a CPU-XeonPhi platform and a CPU-GPU platform. Compared to the single-stream version, our approach achieves, on average, a 1.6x and 1.1x speedup on the XeonPhi and the GPU platform, respectively. These results translate to over 93 percent of the performance delivered by a theoretically perfect predictor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
奋斗灵竹完成签到,获得积分10
刚刚
格非完成签到,获得积分10
1秒前
xiaxue发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
tp040900发布了新的文献求助10
3秒前
冬凌草应助生菜采纳,获得20
4秒前
莫封叶完成签到,获得积分10
6秒前
john完成签到,获得积分10
6秒前
clocksoar完成签到,获得积分10
6秒前
6秒前
6秒前
ding应助慈祥的煎蛋采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
6秒前
HW完成签到 ,获得积分10
7秒前
yoyo完成签到 ,获得积分10
7秒前
zoe完成签到,获得积分10
7秒前
Tangyartie完成签到 ,获得积分10
7秒前
李佳慧完成签到,获得积分10
7秒前
迷你的雁枫完成签到 ,获得积分10
9秒前
Jasen完成签到 ,获得积分10
9秒前
Scss完成签到,获得积分10
9秒前
向言之完成签到,获得积分10
10秒前
smottom应助Lny采纳,获得10
10秒前
噼里啪啦完成签到 ,获得积分10
12秒前
12秒前
舍得完成签到,获得积分10
12秒前
ttkd11完成签到,获得积分10
12秒前
13秒前
juphen2发布了新的文献求助30
13秒前
124cndhaP完成签到,获得积分10
14秒前
龙卡烧烤店完成签到,获得积分10
14秒前
哇哈完成签到 ,获得积分10
14秒前
学呀学完成签到 ,获得积分10
14秒前
研友_24789完成签到,获得积分10
15秒前
diony010完成签到,获得积分10
15秒前
妮妮完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009004
求助须知:如何正确求助?哪些是违规求助? 3548719
关于积分的说明 11299835
捐赠科研通 3283284
什么是DOI,文献DOI怎么找? 1810333
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259