Optimizing Streaming Parallelism on Heterogeneous Many-Core Architectures

计算机科学 粒度 分拆(数论) 分布式计算 利用 对称多处理机系统 多核处理器 任务(项目管理) 共享资源 计算 并行计算 计算机体系结构 计算机网络 组合数学 管理 经济 操作系统 计算机安全 数学 算法
作者
Peng Zhang,Jianbin Fang,Canqun Yang,Chun Huang,Tao Tang,Zheng Wang
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (8): 1878-1896 被引量:16
标识
DOI:10.1109/tpds.2020.2978045
摘要

As many-core accelerators keep integrating more processing units, it becomes increasingly more difficult for a parallel application to make effective use of all available resources. An effective way of improving hardware utilization is to exploit spatial and temporal sharing of the heterogeneous processing units by multiplexing computation and communication tasks - a strategy known as heterogeneous streaming. Achieving effective heterogeneous streaming requires carefully partitioning hardware among tasks, and matching the granularity of task parallelism to the resource partition. However, finding the right resource partitioning and task granularity is extremely challenging, because there is a large number of possible solutions and the optimal solution varies across programs and datasets. This article presents an automatic approach to quickly derive a good solution for hardware resource partition and task granularity for task-based parallel applications on heterogeneous many-core architectures. Our approach employs a performance model to estimate the resulting performance of the target application under a given resource partition and task granularity configuration. The model is used as a utility to quickly search for a good configuration at runtime. Instead of hand-crafting an analytical model that requires expert insights into low-level hardware details, we employ machine learning techniques to automatically learn it. We achieve this by first learning a predictive model offline using training programs. The learned model can then be used to predict the performance of any unseen program at runtime. We apply our approach to 39 representative parallel applications and evaluate it on two representative heterogeneous many-core platforms: a CPU-XeonPhi platform and a CPU-GPU platform. Compared to the single-stream version, our approach achieves, on average, a 1.6x and 1.1x speedup on the XeonPhi and the GPU platform, respectively. These results translate to over 93 percent of the performance delivered by a theoretically perfect predictor.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研豆发布了新的文献求助10
刚刚
科研通AI6应助dawei采纳,获得10
1秒前
慕青应助WYH采纳,获得10
1秒前
小徐发布了新的文献求助10
1秒前
刻苦冰颜完成签到,获得积分20
1秒前
汉堡包应助xdf00采纳,获得10
2秒前
2秒前
WQR发布了新的文献求助10
2秒前
2秒前
零李晃晃发布了新的文献求助10
2秒前
feiline发布了新的文献求助10
2秒前
科研通AI6应助kids采纳,获得10
3秒前
3秒前
3秒前
云朵完成签到 ,获得积分20
4秒前
4秒前
4秒前
边缘发布了新的文献求助10
5秒前
哈哈悦发布了新的文献求助10
5秒前
Zhongyu发布了新的文献求助10
6秒前
6秒前
隐形曼青应助小蚊子采纳,获得10
6秒前
6秒前
科研通AI2S应助小李采纳,获得10
6秒前
6秒前
Roxxane发布了新的文献求助10
6秒前
伍志伟完成签到,获得积分10
7秒前
兰先生发布了新的文献求助10
7秒前
kk发布了新的文献求助10
8秒前
标致白卉完成签到,获得积分10
8秒前
8秒前
czcz-sustech完成签到,获得积分10
8秒前
赵星瑶发布了新的文献求助10
8秒前
9秒前
9秒前
iNk应助badercao采纳,获得40
9秒前
9秒前
李健应助背后的雪卉采纳,获得10
9秒前
能干的小蘑菇完成签到,获得积分10
9秒前
9秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588003
求助须知:如何正确求助?哪些是违规求助? 4671093
关于积分的说明 14785596
捐赠科研通 4624167
什么是DOI,文献DOI怎么找? 2531527
邀请新用户注册赠送积分活动 1500191
关于科研通互助平台的介绍 1468200