Multiple improved residual networks for medical image super-resolution

残余物 计算机科学 卷积神经网络 人工智能 水准点(测量) 深度学习 块(置换群论) 模式识别(心理学) 图像(数学) 特征(语言学) 图像分辨率 算法 计算机视觉 数学 几何学 哲学 语言学 大地测量学 地理
作者
Defu Qiu,Lixin Zheng,Jianqing Zhu,Detian Huang
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:116: 200-208 被引量:100
标识
DOI:10.1016/j.future.2020.11.001
摘要

The rapid development of deep learning has resulted in great breakthroughs in image super-resolution reconstruction technology in medical imaging modalities. The application of artificial intelligence to medical image processing has been the focus of scholars both domestically and internationally in recent years. Due to the fast super-resolution convolutional neural network (FSRCNN) algorithm has fewer convolutional layers and lacks the correlation between the feature information of adjacent convolutional layers, it is difficult to be used to extract deep information of an image, and the super-resolution rate of the image reconstruction effect is not good. To solve this problem, we propose the multiple improved residual network (MIRN) super-resolution reconstruction method. First, MIRN designs the residual blocks connected by multi-level skips to build multiple improved residual block (MIRB) modules. A deep residual network with multi-level skip connection is used to solve the lack of correlation between the characteristic information of adjacent convolutional layers. Then, the stochastic gradient descent method (SGD) is used to train a deep residual network connected by multi-level jumpers with an adjustable learning rate strategy to obtain a super-resolution reconstruction model of the network. Finally, the low-resolution image is input in the MIRN super-resolution reconstruction model, and the residual block obtains the predicted residual eigenvalues and then combines the residual image and the low-resolution image into a high-resolution image. Most quantitative and qualitative evaluations on benchmark datasets demonstrate that the proposed model can better reconstruct the details and textures of images and avoid the over-smoothing of medical images after iteration, and the performance of the proposed algorithm is revealed to be better than that of existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助华老师采纳,获得10
刚刚
1秒前
追风发布了新的文献求助10
1秒前
2秒前
niu发布了新的文献求助10
2秒前
搞科研的静静完成签到,获得积分10
2秒前
3秒前
里里完成签到,获得积分10
4秒前
5秒前
姚芭蕉发布了新的文献求助10
6秒前
酸奶燕麦球完成签到 ,获得积分10
7秒前
发嗲的乐安完成签到 ,获得积分10
7秒前
爆米花应助魔幻的泽洋采纳,获得10
10秒前
10秒前
FH挖掘机关注了科研通微信公众号
13秒前
文献自由侠完成签到,获得积分20
13秒前
陳新儒发布了新的文献求助10
13秒前
14秒前
Gauss应助heavenhorse采纳,获得30
15秒前
蟹老板完成签到,获得积分10
15秒前
15秒前
闵运气完成签到,获得积分10
15秒前
陌路发布了新的文献求助10
15秒前
斯文败类应助嘟嘟包采纳,获得30
16秒前
汉堡格完成签到,获得积分10
16秒前
17秒前
小凯同学完成签到 ,获得积分10
17秒前
沫沫完成签到 ,获得积分10
17秒前
叙白发布了新的文献求助30
17秒前
18秒前
斩妖凉完成签到,获得积分10
20秒前
20秒前
dudu发布了新的文献求助10
20秒前
子訡完成签到 ,获得积分10
20秒前
Xieyusen发布了新的文献求助10
20秒前
爱炖鸽子的咕咕完成签到,获得积分10
21秒前
欢呼忆丹发布了新的文献求助30
22秒前
22秒前
23秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512100
关于积分的说明 11161688
捐赠科研通 3246938
什么是DOI,文献DOI怎么找? 1793609
邀请新用户注册赠送积分活动 874495
科研通“疑难数据库(出版商)”最低求助积分说明 804420