亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiple improved residual networks for medical image super-resolution

残余物 计算机科学 卷积神经网络 人工智能 水准点(测量) 深度学习 块(置换群论) 模式识别(心理学) 图像(数学) 特征(语言学) 图像分辨率 算法 计算机视觉 数学 几何学 哲学 语言学 大地测量学 地理
作者
Defu Qiu,Lixin Zheng,Jianqing Zhu,Detian Huang
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:116: 200-208 被引量:100
标识
DOI:10.1016/j.future.2020.11.001
摘要

The rapid development of deep learning has resulted in great breakthroughs in image super-resolution reconstruction technology in medical imaging modalities. The application of artificial intelligence to medical image processing has been the focus of scholars both domestically and internationally in recent years. Due to the fast super-resolution convolutional neural network (FSRCNN) algorithm has fewer convolutional layers and lacks the correlation between the feature information of adjacent convolutional layers, it is difficult to be used to extract deep information of an image, and the super-resolution rate of the image reconstruction effect is not good. To solve this problem, we propose the multiple improved residual network (MIRN) super-resolution reconstruction method. First, MIRN designs the residual blocks connected by multi-level skips to build multiple improved residual block (MIRB) modules. A deep residual network with multi-level skip connection is used to solve the lack of correlation between the characteristic information of adjacent convolutional layers. Then, the stochastic gradient descent method (SGD) is used to train a deep residual network connected by multi-level jumpers with an adjustable learning rate strategy to obtain a super-resolution reconstruction model of the network. Finally, the low-resolution image is input in the MIRN super-resolution reconstruction model, and the residual block obtains the predicted residual eigenvalues and then combines the residual image and the low-resolution image into a high-resolution image. Most quantitative and qualitative evaluations on benchmark datasets demonstrate that the proposed model can better reconstruct the details and textures of images and avoid the over-smoothing of medical images after iteration, and the performance of the proposed algorithm is revealed to be better than that of existing state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助ceeray23采纳,获得20
18秒前
脑洞疼应助ceeray23采纳,获得20
22秒前
Joceelyn完成签到,获得积分10
28秒前
leilei完成签到,获得积分20
32秒前
子南归完成签到,获得积分10
45秒前
传奇3应助ceeray23采纳,获得20
53秒前
59秒前
充电宝应助光能使者采纳,获得10
1分钟前
1分钟前
光能使者发布了新的文献求助10
1分钟前
深情安青应助复杂黑夜采纳,获得10
1分钟前
1分钟前
复杂黑夜发布了新的文献求助10
1分钟前
所所应助ceeray23采纳,获得20
1分钟前
Owen应助ceeray23采纳,获得20
1分钟前
nojego完成签到,获得积分10
2分钟前
2分钟前
充电宝应助ceeray23采纳,获得20
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
orixero应助科研通管家采纳,获得10
2分钟前
3分钟前
xiaoyuan发布了新的文献求助10
3分钟前
Akim应助ceeray23采纳,获得20
3分钟前
willlee完成签到 ,获得积分10
3分钟前
3分钟前
敏敏9813完成签到,获得积分10
4分钟前
满天都是大萌德关注了科研通微信公众号
4分钟前
胖小羊完成签到 ,获得积分10
4分钟前
Ccccn完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
然463完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
李健应助ARESCI采纳,获得10
6分钟前
samsahpiyaz发布了新的文献求助10
7分钟前
犹豫翠萱完成签到 ,获得积分10
8分钟前
老迟到的羊完成签到 ,获得积分10
8分钟前
zsmj23完成签到 ,获得积分0
8分钟前
8分钟前
moonlight发布了新的文献求助10
9分钟前
gjq完成签到,获得积分10
9分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584704
求助须知:如何正确求助?哪些是违规求助? 4668646
关于积分的说明 14771521
捐赠科研通 4613528
什么是DOI,文献DOI怎么找? 2530193
邀请新用户注册赠送积分活动 1499072
关于科研通互助平台的介绍 1467516