Multiple improved residual networks for medical image super-resolution

残余物 计算机科学 卷积神经网络 人工智能 水准点(测量) 深度学习 块(置换群论) 模式识别(心理学) 图像(数学) 特征(语言学) 图像分辨率 算法 计算机视觉 数学 几何学 哲学 语言学 大地测量学 地理
作者
Defu Qiu,Lixin Zheng,Jianqing Zhu,Detian Huang
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:116: 200-208 被引量:100
标识
DOI:10.1016/j.future.2020.11.001
摘要

The rapid development of deep learning has resulted in great breakthroughs in image super-resolution reconstruction technology in medical imaging modalities. The application of artificial intelligence to medical image processing has been the focus of scholars both domestically and internationally in recent years. Due to the fast super-resolution convolutional neural network (FSRCNN) algorithm has fewer convolutional layers and lacks the correlation between the feature information of adjacent convolutional layers, it is difficult to be used to extract deep information of an image, and the super-resolution rate of the image reconstruction effect is not good. To solve this problem, we propose the multiple improved residual network (MIRN) super-resolution reconstruction method. First, MIRN designs the residual blocks connected by multi-level skips to build multiple improved residual block (MIRB) modules. A deep residual network with multi-level skip connection is used to solve the lack of correlation between the characteristic information of adjacent convolutional layers. Then, the stochastic gradient descent method (SGD) is used to train a deep residual network connected by multi-level jumpers with an adjustable learning rate strategy to obtain a super-resolution reconstruction model of the network. Finally, the low-resolution image is input in the MIRN super-resolution reconstruction model, and the residual block obtains the predicted residual eigenvalues and then combines the residual image and the low-resolution image into a high-resolution image. Most quantitative and qualitative evaluations on benchmark datasets demonstrate that the proposed model can better reconstruct the details and textures of images and avoid the over-smoothing of medical images after iteration, and the performance of the proposed algorithm is revealed to be better than that of existing state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果琦完成签到,获得积分10
1秒前
Ava应助坚定如南采纳,获得10
1秒前
1秒前
科研通AI6应助Yun采纳,获得10
1秒前
1秒前
1秒前
所所应助阿宅采纳,获得10
1秒前
勤奋幻柏完成签到,获得积分10
2秒前
2秒前
老猪佩奇发布了新的文献求助10
2秒前
3秒前
3秒前
喜喜发布了新的文献求助10
3秒前
ch完成签到,获得积分10
3秒前
3秒前
cici完成签到,获得积分10
4秒前
囡囡发布了新的文献求助10
4秒前
小吃货发布了新的文献求助20
4秒前
MathFun完成签到 ,获得积分0
4秒前
4秒前
完美世界应助华仔采纳,获得10
5秒前
沙瑞金发布了新的文献求助10
5秒前
D.D完成签到,获得积分10
5秒前
5秒前
5秒前
wanci应助黎俊采纳,获得10
6秒前
6秒前
6秒前
苹果琦发布了新的文献求助10
6秒前
俭朴灵竹发布了新的文献求助30
6秒前
Synthen发布了新的文献求助10
6秒前
ch发布了新的文献求助10
6秒前
6秒前
zhang完成签到,获得积分10
6秒前
大力思雁发布了新的文献求助10
6秒前
桐桐应助77采纳,获得10
7秒前
yznfly应助wang采纳,获得40
7秒前
ashu发布了新的文献求助10
7秒前
hui完成签到,获得积分10
7秒前
充电宝应助迪迦采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506056
求助须知:如何正确求助?哪些是违规求助? 4601542
关于积分的说明 14477374
捐赠科研通 4535544
什么是DOI,文献DOI怎么找? 2485440
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440887