Multiple improved residual networks for medical image super-resolution

残余物 计算机科学 卷积神经网络 人工智能 水准点(测量) 深度学习 块(置换群论) 模式识别(心理学) 图像(数学) 特征(语言学) 图像分辨率 算法 计算机视觉 数学 几何学 哲学 语言学 大地测量学 地理
作者
Defu Qiu,Lixin Zheng,Jianqing Zhu,Detian Huang
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:116: 200-208 被引量:100
标识
DOI:10.1016/j.future.2020.11.001
摘要

The rapid development of deep learning has resulted in great breakthroughs in image super-resolution reconstruction technology in medical imaging modalities. The application of artificial intelligence to medical image processing has been the focus of scholars both domestically and internationally in recent years. Due to the fast super-resolution convolutional neural network (FSRCNN) algorithm has fewer convolutional layers and lacks the correlation between the feature information of adjacent convolutional layers, it is difficult to be used to extract deep information of an image, and the super-resolution rate of the image reconstruction effect is not good. To solve this problem, we propose the multiple improved residual network (MIRN) super-resolution reconstruction method. First, MIRN designs the residual blocks connected by multi-level skips to build multiple improved residual block (MIRB) modules. A deep residual network with multi-level skip connection is used to solve the lack of correlation between the characteristic information of adjacent convolutional layers. Then, the stochastic gradient descent method (SGD) is used to train a deep residual network connected by multi-level jumpers with an adjustable learning rate strategy to obtain a super-resolution reconstruction model of the network. Finally, the low-resolution image is input in the MIRN super-resolution reconstruction model, and the residual block obtains the predicted residual eigenvalues and then combines the residual image and the low-resolution image into a high-resolution image. Most quantitative and qualitative evaluations on benchmark datasets demonstrate that the proposed model can better reconstruct the details and textures of images and avoid the over-smoothing of medical images after iteration, and the performance of the proposed algorithm is revealed to be better than that of existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡梦园发布了新的文献求助10
刚刚
1秒前
xxfsx应助温暖锦程采纳,获得10
1秒前
2秒前
Ted完成签到,获得积分10
2秒前
2秒前
干净南风发布了新的文献求助10
3秒前
SciGPT应助ding采纳,获得10
3秒前
小小发布了新的文献求助10
3秒前
无风风完成签到 ,获得积分10
3秒前
4秒前
5秒前
5秒前
画中仙完成签到,获得积分20
5秒前
怡然的以筠完成签到,获得积分10
6秒前
6秒前
6秒前
年轻半雪完成签到,获得积分10
7秒前
用户123456发布了新的文献求助10
8秒前
8秒前
刘柳完成签到 ,获得积分10
9秒前
画中仙发布了新的文献求助20
9秒前
Xianao发布了新的文献求助10
10秒前
小茗同学发布了新的文献求助10
10秒前
凉秋气爽完成签到,获得积分10
11秒前
11秒前
豨莶发布了新的文献求助10
11秒前
碎星完成签到,获得积分10
12秒前
爆米花应助zouzhao采纳,获得10
12秒前
14秒前
鳄鱼应助qizhixu采纳,获得10
16秒前
cff完成签到,获得积分10
17秒前
ding应助杀出地狱采纳,获得10
17秒前
平淡的萤发布了新的文献求助10
17秒前
18秒前
Susantong完成签到,获得积分10
19秒前
wang123完成签到,获得积分10
19秒前
yeyeye发布了新的文献求助10
19秒前
19秒前
胡梦园完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271295
求助须知:如何正确求助?哪些是违规求助? 4429059
关于积分的说明 13787301
捐赠科研通 4307199
什么是DOI,文献DOI怎么找? 2363488
邀请新用户注册赠送积分活动 1359063
关于科研通互助平台的介绍 1322066