Common pests image recognition based on deep convolutional neural network

人工智能 卷积神经网络 辍学(神经网络) 卷积(计算机科学) 模式识别(心理学) 计算机科学 试验装置 深度学习 数据集 图像(数学) 人工神经网络 集合(抽象数据类型) F1得分 上下文图像分类 机器学习 程序设计语言
作者
Jin Wang,Yane Li,Hailin Feng,Lijin Ren,Xiaochen Du,Jian Wu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:179: 105834-105834 被引量:57
标识
DOI:10.1016/j.compag.2020.105834
摘要

In order to achieve rapid recognition of the common pests in agriculture and forestry, a new method based on deep convolution neural network was proposed. In this paper, the images of 19 insects and 1 larvae were collected. The data were enhanced by image processing methods such as flipping, rotating, scaling, adding Gussian noise and fancy PCA. The constructed image dataset CPAF had 73,635 insect images, including 4909 original images and 68,726 enhanced images. A 3-folds validation method was used to recognize pest images with VggA, VGG16, Inception V3, ResNet50, as well as CPAFNet, an deep neural network model we designed in this paper, on the CPAF dataset. For the better optimization of identification results, the balanced accuracy was computed and analyzed in this paper. We first compared performance of different models on CPAF dataset. After the same number of iterations of training, the recognition accuracy of the CPAFNet model reached 92.26% when the learning rate was set to 0.02, which is the best performance of all the models participating in the test. The least time spent on training is also the CPAFNet model. Then, the influence of different number of convolution kernels on recognition rate of CPAFNet was analyzed. Results shown that the balance accuracy achieved to 92.63% when the number of convolution kernels corresponding to the convolutional layer group was set to 64-128-256-256. Finally, the influence of different optimization algorithms and dropout probability on training was assessed. Results shown that when the RMSProp algorithm was used and dropout probability was set to 0.8 of CPAFNet, the balance accuracy achieved to 92.63%. In addition, different enhancement algorithms were assessed on pests image recognition of CPAFNet. Results shown that the balance accuracy was decreased from 0.9263 to 0.9152, 0.9125 and 0.9230 on CPAF dataset without expanded data obtained by flipping, rotating and scaling algorithm respectively, which indicate the enhancement algorithms of them can improve the identification precision of pest image. At the same time, the class activation map algorithm was used for feature visualization. Results shown that the CPRAFNet is good for capturing features on pest of CPAF dataset. The results of the model optimization research and the CPAFNet depth model proposed for the CPAF dataset have a good practical significance for the intelligent identification of agricultural and forestry pests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ly完成签到,获得积分10
1秒前
龍焱发布了新的文献求助10
1秒前
qingfeng完成签到,获得积分10
1秒前
虚幻盼晴完成签到,获得积分10
2秒前
yoyoyoyo完成签到,获得积分10
2秒前
望望旺仔牛奶完成签到,获得积分10
2秒前
奇点完成签到 ,获得积分10
3秒前
Lucas应助丫丫采纳,获得10
3秒前
zero完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
hehsk完成签到,获得积分10
5秒前
小龙完成签到,获得积分10
5秒前
李俊凯完成签到 ,获得积分10
5秒前
妖哥完成签到,获得积分10
5秒前
5秒前
6秒前
123发布了新的文献求助10
6秒前
罗是一完成签到,获得积分10
6秒前
6秒前
且听风吟完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
lzcnextdoor完成签到,获得积分10
7秒前
李爱国应助lelelelele采纳,获得10
7秒前
8秒前
zjw应助W66采纳,获得10
8秒前
嘻嘻完成签到,获得积分10
8秒前
WATQ完成签到,获得积分10
8秒前
Incubus完成签到,获得积分10
9秒前
江洋小偷完成签到,获得积分10
9秒前
复杂大象完成签到,获得积分10
10秒前
Gavin完成签到,获得积分10
10秒前
陌上尘开完成签到 ,获得积分10
10秒前
LAYWL发布了新的文献求助10
10秒前
zmmm发布了新的文献求助10
10秒前
共享精神应助yuanjingnan采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615303
求助须知:如何正确求助?哪些是违规求助? 4019099
关于积分的说明 12440991
捐赠科研通 3702052
什么是DOI,文献DOI怎么找? 2041414
邀请新用户注册赠送积分活动 1074129
科研通“疑难数据库(出版商)”最低求助积分说明 957743