亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Common pests image recognition based on deep convolutional neural network

人工智能 卷积神经网络 辍学(神经网络) 卷积(计算机科学) 模式识别(心理学) 计算机科学 试验装置 深度学习 数据集 图像(数学) 人工神经网络 集合(抽象数据类型) F1得分 上下文图像分类 机器学习 程序设计语言
作者
Jin Wang,Yane Li,Hailin Feng,Lijin Ren,Xiaochen Du,Jian Wu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:179: 105834-105834 被引量:57
标识
DOI:10.1016/j.compag.2020.105834
摘要

In order to achieve rapid recognition of the common pests in agriculture and forestry, a new method based on deep convolution neural network was proposed. In this paper, the images of 19 insects and 1 larvae were collected. The data were enhanced by image processing methods such as flipping, rotating, scaling, adding Gussian noise and fancy PCA. The constructed image dataset CPAF had 73,635 insect images, including 4909 original images and 68,726 enhanced images. A 3-folds validation method was used to recognize pest images with VggA, VGG16, Inception V3, ResNet50, as well as CPAFNet, an deep neural network model we designed in this paper, on the CPAF dataset. For the better optimization of identification results, the balanced accuracy was computed and analyzed in this paper. We first compared performance of different models on CPAF dataset. After the same number of iterations of training, the recognition accuracy of the CPAFNet model reached 92.26% when the learning rate was set to 0.02, which is the best performance of all the models participating in the test. The least time spent on training is also the CPAFNet model. Then, the influence of different number of convolution kernels on recognition rate of CPAFNet was analyzed. Results shown that the balance accuracy achieved to 92.63% when the number of convolution kernels corresponding to the convolutional layer group was set to 64-128-256-256. Finally, the influence of different optimization algorithms and dropout probability on training was assessed. Results shown that when the RMSProp algorithm was used and dropout probability was set to 0.8 of CPAFNet, the balance accuracy achieved to 92.63%. In addition, different enhancement algorithms were assessed on pests image recognition of CPAFNet. Results shown that the balance accuracy was decreased from 0.9263 to 0.9152, 0.9125 and 0.9230 on CPAF dataset without expanded data obtained by flipping, rotating and scaling algorithm respectively, which indicate the enhancement algorithms of them can improve the identification precision of pest image. At the same time, the class activation map algorithm was used for feature visualization. Results shown that the CPRAFNet is good for capturing features on pest of CPAF dataset. The results of the model optimization research and the CPAFNet depth model proposed for the CPAF dataset have a good practical significance for the intelligent identification of agricultural and forestry pests.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shhoing应助科研通管家采纳,获得10
21秒前
21秒前
49秒前
量子星尘发布了新的文献求助10
58秒前
wangermazi完成签到,获得积分0
1分钟前
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
oo发布了新的文献求助10
2分钟前
oo完成签到,获得积分10
3分钟前
何为完成签到 ,获得积分0
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
持卿应助科研通管家采纳,获得10
4分钟前
持卿应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
持卿应助科研通管家采纳,获得10
4分钟前
4分钟前
天天快乐应助Pattis采纳,获得10
5分钟前
雪生在无人荒野完成签到,获得积分10
5分钟前
6分钟前
6分钟前
牵绊完成签到 ,获得积分10
6分钟前
6分钟前
guo发布了新的文献求助10
6分钟前
桐桐应助Edelweiss采纳,获得10
7分钟前
上官若男应助guo采纳,获得10
7分钟前
7分钟前
7分钟前
7分钟前
Edelweiss发布了新的文献求助10
7分钟前
Edelweiss完成签到,获得积分20
7分钟前
7分钟前
8分钟前
持卿应助科研通管家采纳,获得10
8分钟前
持卿应助科研通管家采纳,获得10
8分钟前
持卿应助科研通管家采纳,获得10
8分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
持卿应助科研通管家采纳,获得10
8分钟前
8分钟前
vantie发布了新的文献求助10
8分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538804
求助须知:如何正确求助?哪些是违规求助? 4625825
关于积分的说明 14596950
捐赠科研通 4566526
什么是DOI,文献DOI怎么找? 2503337
邀请新用户注册赠送积分活动 1481421
关于科研通互助平台的介绍 1452833