Common pests image recognition based on deep convolutional neural network

人工智能 卷积神经网络 辍学(神经网络) 卷积(计算机科学) 模式识别(心理学) 计算机科学 试验装置 深度学习 数据集 图像(数学) 人工神经网络 集合(抽象数据类型) F1得分 上下文图像分类 机器学习 程序设计语言
作者
Jin Wang,Yane Li,Hailin Feng,Lijin Ren,Xiaochen Du,Jian Wu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:179: 105834-105834 被引量:57
标识
DOI:10.1016/j.compag.2020.105834
摘要

In order to achieve rapid recognition of the common pests in agriculture and forestry, a new method based on deep convolution neural network was proposed. In this paper, the images of 19 insects and 1 larvae were collected. The data were enhanced by image processing methods such as flipping, rotating, scaling, adding Gussian noise and fancy PCA. The constructed image dataset CPAF had 73,635 insect images, including 4909 original images and 68,726 enhanced images. A 3-folds validation method was used to recognize pest images with VggA, VGG16, Inception V3, ResNet50, as well as CPAFNet, an deep neural network model we designed in this paper, on the CPAF dataset. For the better optimization of identification results, the balanced accuracy was computed and analyzed in this paper. We first compared performance of different models on CPAF dataset. After the same number of iterations of training, the recognition accuracy of the CPAFNet model reached 92.26% when the learning rate was set to 0.02, which is the best performance of all the models participating in the test. The least time spent on training is also the CPAFNet model. Then, the influence of different number of convolution kernels on recognition rate of CPAFNet was analyzed. Results shown that the balance accuracy achieved to 92.63% when the number of convolution kernels corresponding to the convolutional layer group was set to 64-128-256-256. Finally, the influence of different optimization algorithms and dropout probability on training was assessed. Results shown that when the RMSProp algorithm was used and dropout probability was set to 0.8 of CPAFNet, the balance accuracy achieved to 92.63%. In addition, different enhancement algorithms were assessed on pests image recognition of CPAFNet. Results shown that the balance accuracy was decreased from 0.9263 to 0.9152, 0.9125 and 0.9230 on CPAF dataset without expanded data obtained by flipping, rotating and scaling algorithm respectively, which indicate the enhancement algorithms of them can improve the identification precision of pest image. At the same time, the class activation map algorithm was used for feature visualization. Results shown that the CPRAFNet is good for capturing features on pest of CPAF dataset. The results of the model optimization research and the CPAFNet depth model proposed for the CPAF dataset have a good practical significance for the intelligent identification of agricultural and forestry pests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123发布了新的文献求助10
刚刚
朴素绿真完成签到,获得积分10
1秒前
1秒前
AAAAAAAAAAA完成签到,获得积分10
1秒前
跳跃稀发布了新的文献求助10
1秒前
LiuX完成签到,获得积分10
2秒前
ding应助能干念双采纳,获得10
2秒前
2秒前
3秒前
bai发布了新的文献求助10
3秒前
JamesPei应助顺心的惜蕊采纳,获得10
3秒前
RC_Wang发布了新的文献求助10
3秒前
Ash完成签到,获得积分10
4秒前
同玉完成签到,获得积分10
5秒前
yzWang发布了新的文献求助10
5秒前
zency完成签到,获得积分10
5秒前
田様应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
5秒前
情怀应助科研通管家采纳,获得20
5秒前
5秒前
今后应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
6秒前
6秒前
xiaozhao完成签到,获得积分10
6秒前
唐唐发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
跳跃稀完成签到,获得积分10
8秒前
虾仁发布了新的文献求助10
9秒前
9秒前
罗海发布了新的文献求助20
9秒前
ych完成签到,获得积分10
10秒前
秋寒松完成签到,获得积分10
10秒前
GuangChe应助简单的大哥采纳,获得50
10秒前
Kin_L发布了新的文献求助10
11秒前
Eazin发布了新的文献求助10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954647
求助须知:如何正确求助?哪些是违规求助? 3500801
关于积分的说明 11101075
捐赠科研通 3231264
什么是DOI,文献DOI怎么找? 1786399
邀请新用户注册赠送积分活动 869980
科研通“疑难数据库(出版商)”最低求助积分说明 801751