Common pests image recognition based on deep convolutional neural network

人工智能 卷积神经网络 辍学(神经网络) 卷积(计算机科学) 模式识别(心理学) 计算机科学 试验装置 深度学习 数据集 图像(数学) 人工神经网络 集合(抽象数据类型) F1得分 上下文图像分类 机器学习 程序设计语言
作者
Jin Wang,Yane Li,Hailin Feng,Lijin Ren,Xiaochen Du,Jian Wu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:179: 105834-105834 被引量:57
标识
DOI:10.1016/j.compag.2020.105834
摘要

In order to achieve rapid recognition of the common pests in agriculture and forestry, a new method based on deep convolution neural network was proposed. In this paper, the images of 19 insects and 1 larvae were collected. The data were enhanced by image processing methods such as flipping, rotating, scaling, adding Gussian noise and fancy PCA. The constructed image dataset CPAF had 73,635 insect images, including 4909 original images and 68,726 enhanced images. A 3-folds validation method was used to recognize pest images with VggA, VGG16, Inception V3, ResNet50, as well as CPAFNet, an deep neural network model we designed in this paper, on the CPAF dataset. For the better optimization of identification results, the balanced accuracy was computed and analyzed in this paper. We first compared performance of different models on CPAF dataset. After the same number of iterations of training, the recognition accuracy of the CPAFNet model reached 92.26% when the learning rate was set to 0.02, which is the best performance of all the models participating in the test. The least time spent on training is also the CPAFNet model. Then, the influence of different number of convolution kernels on recognition rate of CPAFNet was analyzed. Results shown that the balance accuracy achieved to 92.63% when the number of convolution kernels corresponding to the convolutional layer group was set to 64-128-256-256. Finally, the influence of different optimization algorithms and dropout probability on training was assessed. Results shown that when the RMSProp algorithm was used and dropout probability was set to 0.8 of CPAFNet, the balance accuracy achieved to 92.63%. In addition, different enhancement algorithms were assessed on pests image recognition of CPAFNet. Results shown that the balance accuracy was decreased from 0.9263 to 0.9152, 0.9125 and 0.9230 on CPAF dataset without expanded data obtained by flipping, rotating and scaling algorithm respectively, which indicate the enhancement algorithms of them can improve the identification precision of pest image. At the same time, the class activation map algorithm was used for feature visualization. Results shown that the CPRAFNet is good for capturing features on pest of CPAF dataset. The results of the model optimization research and the CPAFNet depth model proposed for the CPAF dataset have a good practical significance for the intelligent identification of agricultural and forestry pests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eraser完成签到,获得积分10
刚刚
小小完成签到,获得积分10
2秒前
letter完成签到,获得积分10
2秒前
只昂张发布了新的文献求助10
2秒前
无敌霸王花应助终醒采纳,获得20
2秒前
4秒前
酷炫的安雁完成签到 ,获得积分10
4秒前
5秒前
LAN0528完成签到,获得积分10
6秒前
笃定发布了新的文献求助10
6秒前
zcl应助温暖的雨旋采纳,获得100
7秒前
6692067发布了新的文献求助10
7秒前
8秒前
木木完成签到,获得积分20
8秒前
叁壹粑粑发布了新的文献求助30
9秒前
学术蛔虫完成签到 ,获得积分10
10秒前
Olsters完成签到,获得积分10
11秒前
123321完成签到,获得积分10
11秒前
11秒前
笃定完成签到,获得积分10
13秒前
桐桐应助XTQ采纳,获得10
13秒前
6692067完成签到,获得积分10
14秒前
大王叫我来巡山完成签到,获得积分10
15秒前
15秒前
16秒前
平常紫安完成签到 ,获得积分10
17秒前
mr_beard完成签到 ,获得积分10
19秒前
19秒前
李白发布了新的文献求助10
20秒前
一一完成签到,获得积分10
21秒前
科研通AI6应助Julie采纳,获得30
22秒前
22秒前
qrwyqjbsd应助洗刷刷采纳,获得10
22秒前
23秒前
amanda应助wgw采纳,获得20
24秒前
25秒前
NEXUS1604举报正宗求助涉嫌违规
26秒前
现代的擎苍完成签到,获得积分10
26秒前
27秒前
lijunlhc完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429