Common pests image recognition based on deep convolutional neural network

人工智能 卷积神经网络 辍学(神经网络) 卷积(计算机科学) 模式识别(心理学) 计算机科学 试验装置 深度学习 数据集 图像(数学) 人工神经网络 集合(抽象数据类型) F1得分 上下文图像分类 机器学习 程序设计语言
作者
Jin Wang,Yane Li,Hailin Feng,Lijin Ren,Xiaochen Du,Jian Wu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:179: 105834-105834 被引量:57
标识
DOI:10.1016/j.compag.2020.105834
摘要

In order to achieve rapid recognition of the common pests in agriculture and forestry, a new method based on deep convolution neural network was proposed. In this paper, the images of 19 insects and 1 larvae were collected. The data were enhanced by image processing methods such as flipping, rotating, scaling, adding Gussian noise and fancy PCA. The constructed image dataset CPAF had 73,635 insect images, including 4909 original images and 68,726 enhanced images. A 3-folds validation method was used to recognize pest images with VggA, VGG16, Inception V3, ResNet50, as well as CPAFNet, an deep neural network model we designed in this paper, on the CPAF dataset. For the better optimization of identification results, the balanced accuracy was computed and analyzed in this paper. We first compared performance of different models on CPAF dataset. After the same number of iterations of training, the recognition accuracy of the CPAFNet model reached 92.26% when the learning rate was set to 0.02, which is the best performance of all the models participating in the test. The least time spent on training is also the CPAFNet model. Then, the influence of different number of convolution kernels on recognition rate of CPAFNet was analyzed. Results shown that the balance accuracy achieved to 92.63% when the number of convolution kernels corresponding to the convolutional layer group was set to 64-128-256-256. Finally, the influence of different optimization algorithms and dropout probability on training was assessed. Results shown that when the RMSProp algorithm was used and dropout probability was set to 0.8 of CPAFNet, the balance accuracy achieved to 92.63%. In addition, different enhancement algorithms were assessed on pests image recognition of CPAFNet. Results shown that the balance accuracy was decreased from 0.9263 to 0.9152, 0.9125 and 0.9230 on CPAF dataset without expanded data obtained by flipping, rotating and scaling algorithm respectively, which indicate the enhancement algorithms of them can improve the identification precision of pest image. At the same time, the class activation map algorithm was used for feature visualization. Results shown that the CPRAFNet is good for capturing features on pest of CPAF dataset. The results of the model optimization research and the CPAFNet depth model proposed for the CPAF dataset have a good practical significance for the intelligent identification of agricultural and forestry pests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Ganlou应助泽丶采纳,获得10
1秒前
2秒前
追寻澜发布了新的文献求助10
2秒前
3秒前
3秒前
nolan完成签到,获得积分10
3秒前
Owen应助大胆的书白采纳,获得10
3秒前
小研发布了新的文献求助10
4秒前
金鱼姬发布了新的文献求助10
4秒前
6秒前
6秒前
6秒前
7秒前
杨小野发布了新的文献求助10
7秒前
7秒前
StarChen完成签到,获得积分10
7秒前
宝子完成签到,获得积分10
8秒前
8秒前
严剑封发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
lvsehx发布了新的文献求助10
10秒前
polly发布了新的文献求助10
10秒前
10秒前
杨哈哈发布了新的文献求助10
11秒前
Ailash完成签到,获得积分20
11秒前
YangShu发布了新的文献求助10
12秒前
开心的母鸡完成签到,获得积分10
12秒前
freedom313514发布了新的文献求助10
12秒前
xhl发布了新的文献求助10
13秒前
13秒前
8R60d8应助温暖寻雪采纳,获得10
13秒前
lll发布了新的文献求助10
14秒前
可爱的函函应助Obliviate采纳,获得10
14秒前
jdhfj完成签到,获得积分10
15秒前
yyx发布了新的文献求助10
15秒前
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309253
求助须知:如何正确求助?哪些是违规求助? 2942586
关于积分的说明 8509788
捐赠科研通 2617736
什么是DOI,文献DOI怎么找? 1430320
科研通“疑难数据库(出版商)”最低求助积分说明 664123
邀请新用户注册赠送积分活动 649274