Varifocal-Net: A Chromosome Classification Approach using Deep Convolutional Networks

卷积神经网络 模式识别(心理学) 深度学习 染色体
作者
Yulei Qin,Juan Wen,Hao Zheng,Xiaolin Huang,Jie Yang,Song Ning,Yuemin Zhu,Lingqian Wu,Guang-Zhong Yang
出处
期刊:arXiv: Computer Vision and Pattern Recognition 被引量:3
标识
DOI:10.1109/tmi.2019.2905841
摘要

Chromosome classification is critical for karyotyping in abnormality diagnosis. To expedite the diagnosis, we present a novel method named Varifocal-Net for simultaneous classification of chromosome's type and polarity using deep convolutional networks. The approach consists of one global-scale network (G-Net) and one local-scale network (L-Net). It follows three stages. The first stage is to learn both global and local features. We extract global features and detect finer local regions via the G-Net. By proposing a varifocal mechanism, we zoom into local parts and extract local features via the L-Net. Residual learning and multi-task learning strategies are utilized to promote high-level feature extraction. The detection of discriminative local parts is fulfilled by a localization subnet of the G-Net, whose training process involves both supervised and weakly-supervised learning. The second stage is to build two multi-layer perceptron classifiers that exploit features of both two scales to boost classification performance. The third stage is to introduce a dispatch strategy of assigning each chromosome to a type within each patient case, by utilizing the domain knowledge of karyotyping. Evaluation results from 1909 karyotyping cases showed that the proposed Varifocal-Net achieved the highest accuracy per patient case (%) 99.2 for both type and polarity tasks. It outperformed state-of-the-art methods, demonstrating the effectiveness of our varifocal mechanism, multi-scale feature ensemble, and dispatch strategy. The proposed method has been applied to assist practical karyotype diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xaaaa发布了新的文献求助10
1秒前
1秒前
念心发布了新的文献求助10
1秒前
尊敬的小熊猫完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
赘婿应助nonononono采纳,获得10
3秒前
3秒前
5秒前
Chasm发布了新的文献求助10
5秒前
6秒前
喵叽完成签到,获得积分10
6秒前
7秒前
wannna发布了新的文献求助10
8秒前
9秒前
王加菲猫完成签到 ,获得积分10
9秒前
一一应助zhzhu采纳,获得20
10秒前
lu发布了新的文献求助10
11秒前
11秒前
大个应助wgd采纳,获得10
12秒前
飘来一朵云完成签到,获得积分10
12秒前
Muncy发布了新的文献求助10
13秒前
慕青应助Lee采纳,获得10
13秒前
和谐诗双发布了新的文献求助10
14秒前
16秒前
Chasm完成签到 ,获得积分10
16秒前
YangSY完成签到,获得积分10
16秒前
17秒前
18秒前
srui完成签到,获得积分10
18秒前
spoon1026发布了新的文献求助10
20秒前
20秒前
nonononono发布了新的文献求助10
21秒前
21秒前
董董完成签到 ,获得积分10
22秒前
愉快的千风完成签到,获得积分10
22秒前
22秒前
课题分离完成签到,获得积分10
22秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245915
求助须知:如何正确求助?哪些是违规求助? 2889535
关于积分的说明 8258943
捐赠科研通 2557956
什么是DOI,文献DOI怎么找? 1386796
科研通“疑难数据库(出版商)”最低求助积分说明 650340
邀请新用户注册赠送积分活动 626692