Ten years of research on synergisms and antagonisms in chemical mixtures: A systematic review and quantitative reappraisal of mixture studies

荟萃分析 毒理 生态毒理学 生化工程 生物 医学 病理 工程类
作者
Olwenn Martin,Martin Scholze,Sibylle Ermler,Joanne McPhie,Stephanie K. Bopp,Aude Kienzler,Nikolaos Parissis,Andreas Kortenkamp
出处
期刊:Environment International [Elsevier BV]
卷期号:146: 106206-106206 被引量:219
标识
DOI:10.1016/j.envint.2020.106206
摘要

Several reviews of synergisms and antagonisms in chemical mixtures have concluded that synergisms are relatively rare. However, these reviews focused on mixtures composed of specific groups of chemicals, such as pesticides or metals and on toxicity endpoints mostly relevant to ecotoxicology. Doubts remain whether these findings can be generalised. A systematic review not restricted to specific chemical mixtures and including mammalian and human toxicity endpoints is missing.We conducted a systematic review and quantitative reappraisal of 10 years' of experimental mixture studies to investigate the frequency and reliability of evaluations of mixture effects as synergistic or antagonistic. Unlike previous reviews, we did not limit our efforts to certain groups of chemicals or specific toxicity outcomes and covered mixture studies relevant to ecotoxicology and human/mammalian toxicology published between 2007 and 2017.We undertook searches for peer-reviewed articles in PubMed, Web of Science, Scopus, GreenFile, ScienceDirect and Toxline and included studies of controlled exposures of environmental chemical pollutants, defined as unintentional exposures leading to unintended effects. Studies with viruses, prions or therapeutic agents were excluded, as were records with missing details on chemicals' identities, toxicities, doses, or concentrations.To examine the internal validity of studies we developed a risk-of-bias tool tailored to mixture toxicology. For a subset of 388 entries that claimed synergisms or antagonisms, we conducted a quantitative reappraisal of authors' evaluations by deriving ratios of predicted and observed effective mixture doses (concentrations).Our searches produced an inventory of 1220 mixture experiments which we subjected to subgroup analyses. Approximately two thirds of studies did not incorporate more than 2 components. Most experiments relied on low-cost assays with readily quantifiable endpoints. Important toxicity outcomes of relevance for human risk assessment (e.g. carcinogenicity, genotoxicity, reproductive toxicity, immunotoxicity, neurotoxicity) were rarely addressed. The proportion of studies that declared additivity, synergism or antagonisms was approximately equal (one quarter each); the remaining quarter arrived at different evaluations. About half of the 1220 entries were rated as "definitely" or "probably" low risk of bias. Strikingly, relatively few claims of synergistic or antagonistic effects stood up to scrutiny in terms of deviations from expected additivity that exceed the boundaries of acceptable between-study variability. In most cases, the observed mixture doses were not more than two-fold higher or lower than the predicted additive doses. Twenty percent of the entries (N = 78) reported synergisms in excess of that degree of deviation. Our efforts of pinpointing specific factors that predispose to synergistic interactions confirmed previous concerns about the synergistic potential of combinations of triazine, azole and pyrethroid pesticides at environmentally relevant doses. New evidence of synergisms with endocrine disrupting chemicals and metal compounds such as chromium (VI) and nickel in combination with cadmium has emerged.These specific cases of synergisms apart, our results confirm the utility of default application of the dose (concentration) addition concept for predictive assessments of simultaneous exposures to multiple chemicals. However, this strategy must be complemented by an awareness of the synergistic potential of specific classes of chemicals. Our conclusions only apply to the chemical space captured in published mixture studies which is biased towards relatively well-researched chemicals.The final protocol was published on the open-access repository Zenodo and attributed the following digital object identifier, doi: https://doi.org//10.5281/zenodo.1319759 (https://zenodo.org/record/1319759#.XXIzdy7dsqM).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
无梦亦无影完成签到 ,获得积分10
刚刚
1秒前
称心的乘云完成签到,获得积分10
1秒前
Kikisong完成签到,获得积分10
1秒前
1秒前
2秒前
鸣笛应助认真谷雪采纳,获得10
3秒前
4秒前
4秒前
4秒前
RRRer完成签到,获得积分10
4秒前
4秒前
小羊咩咩发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
小黄包子完成签到,获得积分10
6秒前
宇文向雪发布了新的文献求助10
6秒前
xuxuxu发布了新的文献求助10
6秒前
鲤鱼平安应助朱sq采纳,获得10
6秒前
Li发布了新的文献求助10
6秒前
胡九九完成签到,获得积分10
6秒前
7秒前
CZY发布了新的文献求助10
7秒前
7秒前
我2023完成签到,获得积分10
8秒前
科研通AI5应助jyyg采纳,获得10
8秒前
8秒前
清晾油发布了新的文献求助10
8秒前
Neurodog完成签到,获得积分10
8秒前
yiyi发布了新的文献求助10
8秒前
Sunshine发布了新的文献求助10
8秒前
鸣笛应助一九采纳,获得10
8秒前
Tao发布了新的文献求助10
9秒前
9秒前
李健的粉丝团团长应助nemo采纳,获得10
9秒前
WuFen发布了新的文献求助10
11秒前
无梦亦无影关注了科研通微信公众号
11秒前
zozo发布了新的文献求助10
11秒前
沫沫完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600474
求助须知:如何正确求助?哪些是违规求助? 4010608
关于积分的说明 12416866
捐赠科研通 3690360
什么是DOI,文献DOI怎么找? 2034326
邀请新用户注册赠送积分活动 1067728
科研通“疑难数据库(出版商)”最低求助积分说明 952513