Stable Isotopes for Tracing Mammalian-Cell Metabolism In Vivo

体内 分区(防火) 新陈代谢 有机体 背景(考古学) 代谢组学 细胞生物学 代谢途径 生物化学 生物 计算生物学 生物信息学 遗传学 古生物学
作者
Juan Fernández-García,Patricia Altea‐Manzano,Erica Pranzini,Sarah‐Maria Fendt
出处
期刊:Trends in Biochemical Sciences [Elsevier]
卷期号:45 (3): 185-201 被引量:63
标识
DOI:10.1016/j.tibs.2019.12.002
摘要

Stable-isotope measurements are increasingly used to probe mammalian-cell metabolism in vivo. The selection of stable-isotope tracer(s) and tracer administration approach is key to maximize the information extracted from in vivo measurements. Metabolic models integrating stable-isotope tracer measurements in tissues and plasma allow quantitative readouts of in vivo metabolism at the whole-organ/whole-body level to be obtained. Tissue heterogeneity and metabolic compartmentalization need to be considered during data interpretation. The development of single-cell/single-organelle metabolomic approaches will advance our understanding of in vivo metabolism. Metabolism is at the cornerstone of all cellular functions and mounting evidence of its deregulation in different diseases emphasizes the importance of a comprehensive understanding of metabolic regulation at the whole-organism level. Stable-isotope measurements are a powerful tool for probing cellular metabolism and, as a result, are increasingly used to study metabolism in in vivo settings. The additional complexity of in vivo metabolic measurements requires paying special attention to experimental design and data interpretation. Here, we review recent work where in vivo stable-isotope measurements have been used to address relevant biological questions within an in vivo context, summarize different experimental and data interpretation approaches and their limitations, and discuss future opportunities in the field. Metabolism is at the cornerstone of all cellular functions and mounting evidence of its deregulation in different diseases emphasizes the importance of a comprehensive understanding of metabolic regulation at the whole-organism level. Stable-isotope measurements are a powerful tool for probing cellular metabolism and, as a result, are increasingly used to study metabolism in in vivo settings. The additional complexity of in vivo metabolic measurements requires paying special attention to experimental design and data interpretation. Here, we review recent work where in vivo stable-isotope measurements have been used to address relevant biological questions within an in vivo context, summarize different experimental and data interpretation approaches and their limitations, and discuss future opportunities in the field. the set of metabolic pathways responsible for transforming carbon from nutrients into biomass and energy inside the cell, including glycolysis, gluconeogenesis, the pentose phosphate pathway, the TCA cycle, the glyoxylate shunt, and the methyl-citrate cycle. gas chromatography; analytical chromatographic technique used to separate volatile substances in the gas phase, based on their different interactions with a stationary phase (or column). The mobile phase is not involved in the interactions per se, but is rather a chemically inert gas that serves to carry the molecules through the stationary phase. collection of MS techniques capable of high resolution in (m/z), typically characterized by an accuracy of four or more decimal places, allowing the detection of differences in mass between compounds with the same nominal mass but different chemical formulas. a condition during an isotope-labeling experiment in which the isotopic enrichment in a given metabolite is stable over time. This should not be confused with the term metabolic steady state, representing a condition in which all layers of metabolism (i.e., metabolite concentrations and metabolic fluxes) remain constant over time in a biological system, irrespective of isotopic labeling. instances of the same molecule that differ in their isotope composition (and consequently in mass). Isotopologues are often referred to in the literature as mass isotopomers. The use of the latter term is, however, discouraged, as it may lead to incorrect identification with the term isotopomer itself (see below). instances of the same isotopologue that differ in the position of their isotopes (and thus not in mass). Resolving the different isotopomers of a given isotopologue requires analytical techniques capable of distinguishing positional isotopic enrichment, such as nuclear magnetic resonance. liquid chromatography; analytical chromatographic technique used to separate ions or molecules based on their different interactions with a liquid mobile phase (where sample ions or molecules are dissolved) and a solid stationary phase (or column). in an isotope labeling experiment, a vector representing the fractional abundances of different isotopologues of a given metabolite in a sample, originating from label incorporation, relative to the total pool of that metabolite in the sample. For a metabolite with N atoms susceptible of label incorporation, the corresponding MDV will have N + 1 components, ranging from the unlabeled isotopologue (no label incorporation) to the fully labeled isotopologue (maximum label incorporation). analytical technique to measure the mass-to-charge ratio (m/z) of one or more ionized molecular species present in a sample. MS-based technique used to determine the spatial abundance profiles of different molecular species within a two-dimensional tissue or sample. the rate at which a whole organism jointly consumes (or produces) a given nutrient to maintain whole-body metabolic homeostasis. a molecule in which one or more atoms are substituted by heavy stable (i.e., nonradioactive) isotopes of the same chemical element. The labeled atoms will generally present the same biological behavior as their unlabeled counterparts, but their increased mass enables their distinction from the latter by appropriate analytical techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助咖喱酱采纳,获得10
3秒前
张光光发布了新的文献求助10
4秒前
Dean发布了新的文献求助10
5秒前
5秒前
5秒前
毛豆应助zx采纳,获得10
6秒前
7秒前
ding应助热心的书蕾采纳,获得10
7秒前
ceeray23应助sunflower采纳,获得10
8秒前
打打应助端庄的白开水采纳,获得10
10秒前
10秒前
11秒前
699565完成签到,获得积分10
11秒前
11秒前
小七上山完成签到,获得积分10
12秒前
lwh完成签到,获得积分10
12秒前
噢噢噢噢发布了新的文献求助10
12秒前
yuanyuan完成签到,获得积分10
13秒前
14秒前
喃喃发布了新的文献求助10
15秒前
Heidi发布了新的文献求助30
15秒前
万能图书馆应助Erin采纳,获得10
16秒前
li完成签到,获得积分10
18秒前
提米橘发布了新的文献求助10
19秒前
19秒前
木云浅夏发布了新的文献求助10
19秒前
20秒前
上官若男应助duyu采纳,获得30
22秒前
niumi190完成签到,获得积分10
22秒前
火星上雁枫应助宋忘幽采纳,获得10
23秒前
欢喜依霜发布了新的文献求助10
23秒前
京阿尼发布了新的文献求助10
24秒前
25秒前
所愿所得应助ggbond采纳,获得10
25秒前
27秒前
努努完成签到,获得积分10
27秒前
爆米花应助xingyi采纳,获得80
28秒前
早日暴富完成签到 ,获得积分10
29秒前
闻晓晴完成签到,获得积分10
29秒前
木木木子完成签到 ,获得积分10
30秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3433975
求助须知:如何正确求助?哪些是违规求助? 3031178
关于积分的说明 8941204
捐赠科研通 2719199
什么是DOI,文献DOI怎么找? 1491676
科研通“疑难数据库(出版商)”最低求助积分说明 689392
邀请新用户注册赠送积分活动 685523