The large-scale integration of 1D hierarchical anode/cathode electrodes has huge application prospects in lithium ion battery (LIB) engineering. 1D geometric topology shapes have been adapted in coin-type half-/full-scale and pouch-type cell LIBs, which demonstrate electron stream movements and Li+ ion diffusions in 1D-hierarchical anode/cathode electrode materials. Controlling the geometrical and morphological configurations of 1D-hierarchical anode/cathode electrodes shows great potential in designing the charge/discharge capacity of LIBs with long-term stable cycles, rapid electron and Li+ ion diffusion kinetics, and maximum rate capacity and capacity storage. Coin-type full-cell LIBs show a distinct reversibility and rate capability performance and a superb Coulombic efficiency of ~99.7% after going through lithiation/delithiation (discharge/charge) cycling processes. LIB pouch-type cell assemblies are fabricated by densely packing 1D hierarchical anode/cathode electrode geometrics in collar-stacked layers. A pouch-type cell battery has a full recovery rate capability to withstand formidable long-term cycles (>>2000 cycles), a substantial areal discharge capacity (≈2.85 mAh/cm2), and remarkable gravimetric and volumetric cell energy densities of ≈187.39 Wh/kg and 243.37 Wh/L, respectively. We expect that the tradeoff requirements and demands in electric vehicles can be improved by these variable LIB designs based on 1D electrode patterns.