亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of a novel machine learning framework for predicting non-metastatic prostate cancer-specific mortality in men using the Surveillance, Epidemiology, and End Results (SEER) database

医学 列线图 前列腺癌 一致性 癌症 前列腺 肿瘤科 流行病学 人口 内科学 监测、流行病学和最终结果 机器学习 数据库 人工智能 癌症登记处 计算机科学 环境卫生
作者
Changhee Lee,Alexander Light,Ahmed M. Alaa,David Thurtle,Mihaela van der Schaar,Vincent J. Gnanapragasam
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:3 (3): e158-e165 被引量:61
标识
DOI:10.1016/s2589-7500(20)30314-9
摘要

BackgroundAccurate prognostication is crucial in treatment decisions made for men diagnosed with non-metastatic prostate cancer. Current models rely on prespecified variables, which limits their performance. We aimed to investigate a novel machine learning approach to develop an improved prognostic model for predicting 10-year prostate cancer-specific mortality and compare its performance with existing validated models.MethodsWe derived and tested a machine learning-based model using Survival Quilts, an algorithm that automatically selects and tunes ensembles of survival models using clinicopathological variables. Our study involved a US population-based cohort of 171 942 men diagnosed with non-metastatic prostate cancer between Jan 1, 2000, and Dec 31, 2016, from the prospectively maintained Surveillance, Epidemiology, and End Results (SEER) Program. The primary outcome was prediction of 10-year prostate cancer-specific mortality. Model discrimination was assessed using the concordance index (c-index), and calibration was assessed using Brier scores. The Survival Quilts model was compared with nine other prognostic models in clinical use, and decision curve analysis was done.Findings647 151 men with prostate cancer were enrolled into the SEER database, of whom 171 942 were included in this study. Discrimination improved with greater granularity, and multivariable models outperformed tier-based models. The Survival Quilts model showed good discrimination (c-index 0·829, 95% CI 0·820–0·838) for 10-year prostate cancer-specific mortality, which was similar to the top-ranked multivariable models: PREDICT Prostate (0·820, 0·811–0·829) and Memorial Sloan Kettering Cancer Center (MSKCC) nomogram (0·787, 0·776–0·798). All three multivariable models showed good calibration with low Brier scores (Survival Quilts 0·036, 95% CI 0·035–0·037; PREDICT Prostate 0·036, 0·035–0·037; MSKCC 0·037, 0·035–0·039). Of the tier-based systems, the Cancer of the Prostate Risk Assessment model (c-index 0·782, 95% CI 0·771–0·793) and Cambridge Prognostic Groups model (0·779, 0·767–0·791) showed higher discrimination for predicting 10-year prostate cancer-specific mortality. c-indices for models from the National Comprehensive Cancer Care Network, Genitourinary Radiation Oncologists of Canada, American Urological Association, European Association of Urology, and National Institute for Health and Care Excellence ranged from 0·711 (0·701–0·721) to 0·761 (0·750–0·772). Discrimination for the Survival Quilts model was maintained when stratified by age and ethnicity. Decision curve analysis showed an incremental net benefit from the Survival Quilts model compared with the MSKCC and PREDICT Prostate models currently used in practice.InterpretationA novel machine learning-based approach produced a prognostic model, Survival Quilts, with discrimination for 10-year prostate cancer-specific mortality similar to the top-ranked prognostic models, using only standard clinicopathological variables. Future integration of additional data will likely improve model performance and accuracy for personalised prognostics.FundingNone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
14秒前
1分钟前
科研通AI2S应助PMoLGGYM2021采纳,获得10
1分钟前
1分钟前
1分钟前
刘小博完成签到,获得积分10
1分钟前
刘小博发布了新的文献求助10
1分钟前
2分钟前
2分钟前
筋斗云发布了新的文献求助10
2分钟前
Neonoes完成签到 ,获得积分10
2分钟前
魔法师完成签到,获得积分10
2分钟前
李爱国应助筋斗云采纳,获得10
2分钟前
mirrovo完成签到 ,获得积分10
2分钟前
2分钟前
魁梧的盼望完成签到 ,获得积分10
2分钟前
加菲丰丰应助科研通管家采纳,获得20
3分钟前
加菲丰丰应助科研通管家采纳,获得20
3分钟前
3分钟前
4分钟前
4分钟前
充电宝应助雪白的听寒采纳,获得10
4分钟前
miniZhang发布了新的文献求助10
4分钟前
Jasper应助白华苍松采纳,获得10
5分钟前
5分钟前
炫白完成签到,获得积分10
5分钟前
汉堡包应助炫白采纳,获得10
5分钟前
昏黄完成签到,获得积分10
5分钟前
Echopotter完成签到,获得积分10
6分钟前
6分钟前
英俊的铭应助科研通管家采纳,获得10
7分钟前
完美世界应助科研通管家采纳,获得10
7分钟前
7分钟前
8分钟前
白华苍松发布了新的文献求助10
8分钟前
8分钟前
8分钟前
55555发布了新的文献求助20
8分钟前
believe完成签到,获得积分10
8分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
RNAの科学 ―時代を拓く生体分子― 金井 昭夫(編) 800
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353489
求助须知:如何正确求助?哪些是违规求助? 2978125
关于积分的说明 8683763
捐赠科研通 2659467
什么是DOI,文献DOI怎么找? 1456257
科研通“疑难数据库(出版商)”最低求助积分说明 674302
邀请新用户注册赠送积分活动 665020