Application of a novel machine learning framework for predicting non-metastatic prostate cancer-specific mortality in men using the Surveillance, Epidemiology, and End Results (SEER) database

医学 列线图 前列腺癌 一致性 癌症 前列腺 肿瘤科 流行病学 人口 内科学 监测、流行病学和最终结果 机器学习 数据库 人工智能 癌症登记处 计算机科学 环境卫生
作者
Changhee Lee,Alexander Light,Ahmed M. Alaa,David Thurtle,Mihaela van der Schaar,Vincent J. Gnanapragasam
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:3 (3): e158-e165 被引量:61
标识
DOI:10.1016/s2589-7500(20)30314-9
摘要

BackgroundAccurate prognostication is crucial in treatment decisions made for men diagnosed with non-metastatic prostate cancer. Current models rely on prespecified variables, which limits their performance. We aimed to investigate a novel machine learning approach to develop an improved prognostic model for predicting 10-year prostate cancer-specific mortality and compare its performance with existing validated models.MethodsWe derived and tested a machine learning-based model using Survival Quilts, an algorithm that automatically selects and tunes ensembles of survival models using clinicopathological variables. Our study involved a US population-based cohort of 171 942 men diagnosed with non-metastatic prostate cancer between Jan 1, 2000, and Dec 31, 2016, from the prospectively maintained Surveillance, Epidemiology, and End Results (SEER) Program. The primary outcome was prediction of 10-year prostate cancer-specific mortality. Model discrimination was assessed using the concordance index (c-index), and calibration was assessed using Brier scores. The Survival Quilts model was compared with nine other prognostic models in clinical use, and decision curve analysis was done.Findings647 151 men with prostate cancer were enrolled into the SEER database, of whom 171 942 were included in this study. Discrimination improved with greater granularity, and multivariable models outperformed tier-based models. The Survival Quilts model showed good discrimination (c-index 0·829, 95% CI 0·820–0·838) for 10-year prostate cancer-specific mortality, which was similar to the top-ranked multivariable models: PREDICT Prostate (0·820, 0·811–0·829) and Memorial Sloan Kettering Cancer Center (MSKCC) nomogram (0·787, 0·776–0·798). All three multivariable models showed good calibration with low Brier scores (Survival Quilts 0·036, 95% CI 0·035–0·037; PREDICT Prostate 0·036, 0·035–0·037; MSKCC 0·037, 0·035–0·039). Of the tier-based systems, the Cancer of the Prostate Risk Assessment model (c-index 0·782, 95% CI 0·771–0·793) and Cambridge Prognostic Groups model (0·779, 0·767–0·791) showed higher discrimination for predicting 10-year prostate cancer-specific mortality. c-indices for models from the National Comprehensive Cancer Care Network, Genitourinary Radiation Oncologists of Canada, American Urological Association, European Association of Urology, and National Institute for Health and Care Excellence ranged from 0·711 (0·701–0·721) to 0·761 (0·750–0·772). Discrimination for the Survival Quilts model was maintained when stratified by age and ethnicity. Decision curve analysis showed an incremental net benefit from the Survival Quilts model compared with the MSKCC and PREDICT Prostate models currently used in practice.InterpretationA novel machine learning-based approach produced a prognostic model, Survival Quilts, with discrimination for 10-year prostate cancer-specific mortality similar to the top-ranked prognostic models, using only standard clinicopathological variables. Future integration of additional data will likely improve model performance and accuracy for personalised prognostics.FundingNone.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
今后应助Sor采纳,获得10
2秒前
乾乾发布了新的文献求助10
4秒前
5秒前
Tergel发布了新的文献求助10
7秒前
7秒前
医学小渣渣完成签到,获得积分10
7秒前
静静静发布了新的文献求助10
8秒前
季风发布了新的文献求助10
8秒前
10秒前
啊啊啊发布了新的文献求助10
10秒前
11秒前
Sor发布了新的文献求助10
12秒前
所所应助ddup采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
Nuyoah完成签到 ,获得积分10
13秒前
13秒前
yiy37发布了新的文献求助10
14秒前
充电宝应助luraaaa采纳,获得10
14秒前
范户晓完成签到,获得积分10
15秒前
轨迹应助Zshen采纳,获得10
16秒前
dimples完成签到 ,获得积分10
16秒前
17秒前
yuki发布了新的文献求助10
17秒前
17秒前
17秒前
柏代桃发布了新的文献求助10
18秒前
罗昱昕发布了新的文献求助10
18秒前
19秒前
qianluo完成签到,获得积分10
19秒前
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
maner完成签到 ,获得积分10
21秒前
21秒前
21秒前
落后的新柔完成签到 ,获得积分10
21秒前
Wang完成签到,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5826394
求助须知:如何正确求助?哪些是违规求助? 6015346
关于积分的说明 15569531
捐赠科研通 4946656
什么是DOI,文献DOI怎么找? 2664923
邀请新用户注册赠送积分活动 1610763
关于科研通互助平台的介绍 1565679